矩阵

线性代数 专栏收录该内容
7 篇文章 0 订阅

矩阵的概念

矩阵的概念

  1. m×n个数aij(i=1,2,...,n;j=1,2,...,n)排成的mn列的数表(a11a12...a1na21a22...a2n...am1am2...amn)称其为一个mn列矩阵,简称为m×n矩阵。矩阵通常用A,B,C等来表示,记为A=(aij)m×nAm×n,其中aij为第i行第j列交叉位置上的元素
    • 元素aij(i=1,2,...,m;j=1,2,...,n)都为实数的矩阵称为实矩阵;元素aij(i=1,2,...,m;j=1,2,...,n)中有复数的矩阵称为复矩阵;元素全为零的矩阵称为零矩阵m×n零矩阵记作Om×n
    • 在矩阵Am×n中,当m=1时,称为行矩阵;当n=1时,称为列矩阵;当m=n时,称为n方阵,简记为An
    • 若矩阵A,B的行数相同,列数也相同,则称A,B同型矩阵,设矩阵A,B是同型矩阵,如果对一切i,j,都有aij=bij,则称矩阵A,B相等,记作A=B
    • 几种特殊的矩阵

      1. 对角矩阵:称方阵(a10...00a2...0...00...an)对角矩阵,记为Λdiag(a1,a2,...,an)。其特点是:除从左上角到右下角(称为主对角线)上的元素以外,其余元素都为零(对角线上元素不全为零)
      2. 数量矩阵:若对角矩阵的主对角线上的元素全为非零常数k,即(k0...00k...0...00...k)n×n则称该矩阵为数量矩阵(或标量矩阵),记为kE
      3. 单位矩阵:若对角矩阵的主对角线上的元素全为1,即(10...001...0...00...1)n×n称其为n单位矩阵,记为EnE
      4. 三角阵,主对角线上(下)方元素全为0的方阵,称为下(上)三角阵,如A=(a110...0a21a22...0...an1an2...ann)B=(a11a12...a1n0a22...a2n...00...ann)矩阵A下三角阵B上三角阵

      矩阵的运算

      矩阵的线性运算

      1. 设矩阵A=(a_{ij}),B=(b_{ij})都是m\times n矩阵,矩阵A与矩阵B的和记为A+B,规定A+B=\left( \begin{matrix} a_{11}+b_{11} & a_{12} +b_{12}&...&a_{1n}+b_{1n}\\a_{21} +b_{21} & a_{22}+b_{22} &...&a_{2n}+b_{2n}\\...\\a_{m1}+b_{m1} & a_{m2}+b_{m2} &...&a_{mn}+b_{mn}\end{matrix}\right),只有当两个矩阵是同型矩阵时,才能进行加法运算
        设矩阵A=(a_{ij}),记-A=(-a_{ij}),称-A为矩阵A负矩阵。这样,矩阵的减法可定义为A-B=A+(-B),显然A-A=A+(-A)=O
      2. \lambda与矩阵A的乘积,记作\lambda AA\lambda,规定\lambda A=A\lambda=(\lambda a_{ij})=\left( \begin{matrix} \lambda a_{11} & \lambda a_{12} &...&\lambda a_{1n}\\\lambda a_{21} & \lambda a_{22} &...&\lambda a_{2n}\\...\\\lambda a_{m1} & \lambda a_{m2} &...&\lambda a_{mn}\end{matrix}\right).数与矩阵的乘积运算称为数乘运算.特别的,1\cdot A=A, (-1)\cdot A=-A
      3. 矩阵加法和数乘两种运算,统称为矩阵的线性运算.矩阵的线性运算满足以下运算律(设A,B都为m\times n矩阵,\lambda,\mu都为数):
        1. 加法交换律:A+B=B+A;
        2. 加法结合律:(A+B)+C=A+(B+C);
        3. 数乘结合律:\lambda(\mu A)=\mu(\lambda A)=(\lambda \mu)A;
        4. 数乘矩阵的分配律:(\lambda+\mu)A=\lambda A+\mu A\lambda(A+B)=\lambda A+\lambda B.

      矩阵的乘法

      1. A=(a_{ij})是一个m\times s矩阵,B=(b_{ij})是一个s\times n矩阵,规定矩阵A与矩阵B的乘积是一个m\times n矩阵C=(c_{ij}),其中c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{is}b_{sj}=\sum_{k=1}^sa_{ik}b_{kj},i=1,2,...,m;j=1,2,...,n,记作C=AB.(只有第一个矩阵的列数等于第二个矩阵的行数时,才能相乘)
      2. 矩阵乘法满足以下运算规律:
        1. 结合律:(AB)C=A(BC);
        2. 分配律:A(B+C)=AB+AC,(B+C)A=BA+CA;
        3. \lambda (AB)=(\lambda A)B=A(\lambda B),其中\lambda为数;
        4. 设矩阵A_{m\times n},则AE_{n}=E_mA=A
      3. 若矩阵A与矩阵B满足AB=BA,则称矩阵A,B可交换,否则称为不可交换.显然,可交换的矩阵一定是方阵
      4. A是一个n阶方阵,记A^1=A,A^2=A\cdot A,...,A^{k+1}=A^k\cdot A,其中k为正整数,称A^k为方阵Ak次幂,也就是kA的连乘积.规定A^0=E.容易验证方阵的幂运算满足以下运算律:A^kA^l,(A^k)^l=A^{kl},其中k,l都为正整数.
        若多项式f(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_1x+a_0(a_k,a_{k-1},...,a_0均为实数)中的x以方阵A代替,得f(A)=a_kA^k+a_{k-1}A^{k-1}+...a_1A+a_0E,称其为方阵A的多项式

      矩阵的转置

      1. 设矩阵A=(a_{ij})_{m\times n}把矩阵A的行换成同序数的列,得到新矩阵B=(a_{ji})_{n\times m},称矩阵B为矩阵A转置矩阵,记作A^T。例如,A=\left( \begin{matrix} 1 & 2 & 2 \\ 4 & 5 & 8 \end{matrix}\right) A^T=\left( \begin{matrix} 1 & 4 \\ 2 & 5 \\ 2 & 8 \end{matrix}\right)
        • 矩阵的转置满足以下运算律:
          1. (A^T)^T=A;
          2. (A+B)^T=A^T+B^T;
          3. (\lambda A)^T=\lambda A^T
          4. (AB)^T=B^TA^T
        • 设矩阵An阶方阵,如果A^T=A,即对一切的i,j(1\le i,j\le n),有a_{ij}=a_{ji},则称矩阵A对称矩阵
        • 设矩阵An阶方阵,如果A^T=-A,即对一切的i,j(1\le i, j\le n),有a_{ij}=-a{ji},则称矩阵A<script type="math/tex">A</script>为反对称矩阵

      共轭矩阵

      1. 设矩阵A=(a_{ij})为复(数)矩阵,称矩阵\overline A=(\overline{a_{ij}})为矩阵A共轭矩阵,其中\overline{a_{ij}}表示\overline{a_{ij}}的共轭复数
      2. 共轭矩阵满足以下运算律:
        1. \overline{A+B}=\overline{A}+\overline{B};
        2. \overline{\lambda A}=\overline{\lambda}+\overline{A};
        3. \overline{AB}=\overline{A}\cdot \overline{B};
        4. \overline{A^T}=(\overline{A})^T
          其中\lambda是复数

      方阵的行列式

      排列与逆序

      1. 将自然数1,2,...,n排成一列称为这n个自然数的一个全排列.n个数的不同全排列有n!个,我们规定按数的大小次序,由小到大的排列称为自然排列
      2. 在一个排列中,若某个较大的数排在某个较小的数前面,就称这两个数构成一个逆序,一个排列中出现的逆序的总数称为这个排列的逆序数,通常记为\tau(i_1i_2...i_n)
      3. 逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列
      4. 在排列中,将任意两个元素对调,其余元素不动,称为一次对换,将相邻两个元素对调,称为相邻对换
      5. 将一个排列中任意两个元素对换,排列的奇偶性改变
      6. 自然数1~n(n\ge2)的全排列中,奇偶排列各占一半,各为\frac{n!}{2}

      n阶方阵的行列式的定义

      1. n阶方阵An^2个元素组成如下形式:\left| \begin{matrix} a_{11} & a_{12} &...& a_{1n}\\ a_{21} & a_{22} &...& a_{2n}\\...\\ a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right|,称为n<script type="math/tex">n</script>阶行列式,记为|A|\det A.也可用D来表示.它等于n!项的代数和,其中每一项都是取自不同行、不同列的n个元素的乘积a_{1j_1}a_{2j_2}...a_{nj_n},并赋予符号(-1)^{\tau (j_1j_2...j_n)}.这里,j_1j_2...j_n1,2,...,n的某个全排列,\tau(j_1j_2...j_n)为该排列的逆序数,即|A|=\left| \begin{matrix} a_{11} & a_{12} &...& a_{1n}\\ a_{21} & a_{22} &...& a_{2n}\\...\\ a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right|=\sum(-1)^{\tau(j_1j_2...j_n)}a_{1j_1}a_{2j_2}...a_{nj_n},
        例如,6阶方阵的行列式由6!项组成的代数和,对于含a_{12}a_{23}a_{35}a_{41}a_{54}a_{66}的项,由于\tau(235146)=4,所以其符号为正
        特别的,当n=1时,|A|=|a_{11}|=a_{11},此处行列式|a|不是a的绝对值,如行列式|-1|=-1
        • 对角矩阵的行列式(除主对角线上的元素外,其余元素都为0):|\Lambda|=\left| \begin{matrix} a_{11} & 0 &...& 0\\ 0 & a_{22} &...& 0\\...\\ 0 & 0 &...&a_{nn}\end{matrix}\right|=a_{11}a_{22}...a_{nn};
        • 上(下)三角矩阵的行列式|A|=\left| \begin{matrix} a_{11} & a_{12} &...& a_{1n}\\ 0 & a_{22} &...& a_{2n}\\...\\ 0 & 0&...&a_{nn}\end{matrix}\right|=\left| \begin{matrix} a_{11} & 0 &...& 0\\ a_{21} & a_{22} &...& 0\\...\\ a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right|=a_{11}a_{22}...a_{nn}
        • 负对角矩阵的行列式|\Lambda|=\left| \begin{matrix} 0 &...& 0& a_{1n}\\ 0 &...& a_{2,n-1}& 0\\...\\ a_{n1} &...& 0 &0\end{matrix}\right|=(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}...a_{n1}
        • 行列式的等价定义\left| \begin{matrix} a_{11} & a_{12} &...&a_{1n}\\a_{21} & a_{22} &...&a_{2n}\\...\\a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right|=\sum(-1)^{\tau(i_1i_2...i_n)}a_{i_11}a_{i_22}...a_{i_nn}

        方阵的行列式的性质

        1. n阶方阵A=(a_{ij})_{n\times n}的转置矩阵A^T的行列式等于矩阵A的行列式,即设\left( \begin{matrix} a_{11} & a_{12} &...&a_{1n}\\a_{21} & a_{22} &...&a_{2n}\\...\\a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right),A^T=\left( \begin{matrix} a_{11} & a_{21} &...&a_{n1}\\a_{12} & a_{22} &...&a_{n2}\\...\\a_{1n} & a_{2n} &...&a_{nn}\end{matrix}\right),则|A^T|=|A|.
        2. 交换行列式的任意两行(列),行列式变号
        3. 如果行列式的某两行(列)对应元素相同,则行列式为0
        4. 用数k乘以行列式的某一行(列)中所有元素,等于用数k乘以此行列式
        5. 行列式中某一行(列)的公因子可以提到行列式符号外面,即\left| \begin{matrix} a_{11} & a_{12} &...&a_{1n}\\...\\ka_{i1} & ka_{i2} &...&ka_{in}\\...\\a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right|=k\left| \begin{matrix} a_{11} & a_{12} &...&a_{1n}\\...\\a_{i1} & a_{i2} &...&a_{in}\\...\\a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right|
        6. 若行列式某两行(列)的对应元素成比例,则行列式等于0
        7. 在行列式中,如果某一行(列)都是两数之和,则此行列式等于两个行列式的和,并且这两个行列式除这一行(列)以外,其余的行(列)与原来行列式对应的行(列)一样,即\left| \begin{matrix} a_{11} & a_{12} &...&a_{1n}\\...\\c_{i1}+b_{i1} & c_{i2} + b_{i2} &...&c_{in}+b_{in}\\...\\a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right| = \left| \begin{matrix} a_{11} & a_{12} &...&a_{1n}\\...\\c_{i1} & c_{i2} &...&c_{in}\\...\\a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right| + \left| \begin{matrix} a_{11} & a_{12} &...&a_{1n}\\...\\b_{i1} & b_{i2} &...&b_{in}\\...\\a_{n1} & a_{n2} &...&a_{nn}\end{matrix}\right|
        8. 行列式的某一行(列)的所有元素乘以同一数k后再加到另一行(列)对应元素上,行列式的值不变

        行列式按行(列)展开

        1. n阶行列式中,把元素a_{ij}所在的第i行和第j列划去后,余下的n-1阶行列式称为元素a_{ij}余子式,记为M_{ij},称为(-1)^{i+j}M_{ij}为元素a_{ij}代数余子式,记为A_{ij},即A_{ij}=(-1)^{i+j}M_{ij},例如,|A|=\left| \begin{matrix}a_{11} & a_{12} &a_{13} &a_{14}\\a_{21} & a_{22} &a_{23} &a_{24}\\a_{31} & a_{32} &a_{33} &a_{34}\\a_{41} & a_{42} &a_{43} &a_{44}\\ \end{matrix}\right|,M_{23}=\left|\begin{matrix}a_{11} & a_{12} &a_{14}\\a_{31} & a_{32} &a_{34}\\a_{41} & a_{42} &a_{44}\\ \end{matrix}\right| A_{23}=(-1)^{2+3}M_{23}=-M_{23}
        2. 行列式等于它的任一行(列)的各元素与其对应的代数余子式成绩之和,即|A|=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in,i=1,2,...,n}
        3. 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式成绩之和等于零,即a_{i1}A_{j1}+a_{i2}A_{j2}+...+a_{in}A_{jn}=0,i\not= j.
        4. 利用行列式按行(列)展开定理,并结合行列式性质,可简化行列式的计算,计算行列式时,可先用行列式的性质将某一行(列)化为仅含一个非零元素;再按此行(列)展开,变为低一阶的行列式来计算

        拉普拉斯定理

        1. n阶方阵的行列式|A|中,任取kk列,位于这些行和列交叉位置上的k^2个元素,按原来的顺序组成一个新的k阶行列式M,称其为|A|的一个k阶子式,在|A|中,划去这kk列,余下元素按原来顺序构成一个n-k阶行列式N,称其为M余子式(-1)^{i_1+...+i_k+j_1+...+j_k}NM代数余子式,其中i_1,...,i_k,j_1,...,j_k分别是k阶行列式M|A|中的行标和列标
        2. 拉普拉斯定理:n阶方阵的行列式|A|中,任取k行(列),由这k行(列)组成的所有k阶行列式与它们对应的代数余子式之积求和等于|A|

        方阵的行列式的运算律

        1. A,B都是n<script type="math/tex">n</script>阶方阵,\lambda为实数,则(1)|A^T|=|A|;(2)|\lambda A|=\lambda ^n|A|;(3)|AB|=|A||B|
        2. n阶方阵A的行列式|A|的各个元素的代数余子式A_{ij}构成的如下矩阵:\left( \begin{matrix} A_{11} & A_{21} &...&A_{n1}\\A_{12} & A_{22} &...&A_{n2}\\...\\A_{1n} & A_{2n} &...&A_{nn}\end{matrix}\right),称为矩阵A伴随矩阵,记为A^*
        3. 伴随矩阵的性质:AA^*=A^*A=|A|E

        逆矩阵

        逆矩阵的概念

        1. An阶方阵,若存在n阶方阵B,使得AB=BA=E,则称矩阵A可逆的,称矩阵B为矩阵A的逆矩阵
        2. 设矩阵B,C都是矩阵A的逆矩阵,有AB=BA=E,AC=CA=E,因此B=BE=B(AC)=(BA)C=EC=C.,这说明,如果矩阵A可逆,其逆矩阵一定唯一,记为A^{-1}
        3. n阶方阵A可逆的充分必要条件为|A|\not= 0,且当矩阵A可逆时,A^{-1}=\frac{1}{|A|}A^*.其中,A^*为矩阵A的伴随矩阵
        4. |A|=0时,称矩阵A奇异矩阵,否则称为非奇异矩阵,因此,可逆矩阵也称为非奇异矩阵
        5. 设矩阵A,B都为n阶方阵,如果AB=EBA=E,则矩阵A可逆,且A^{-1}=B

        逆矩阵的性质

        1. A可逆,则A^{-1}也可逆,且(A^{-1})^{-1}=A;事实上,由AA^{-1}=E,(A^{-1})^{-1}=A.
        2. A可逆,数\lambda \not= 0,则\lambda A可逆,且(\lambda A)^{-1}=\frac{1}{\lambda}A^{-1}
        3. A,B为同阶方阵且均可逆,则AB也可逆,且(AB)^{-1}=B^{-1}A^{-1}
        4. A_1,A_2,...,A_m都是n阶可逆矩阵,则(A_1A_2...A_m)^{-1}=A_m^{-1}...A_2^{-1}A_1^{-1}
        5. A可逆,则A^T也可逆,且(A^T)^{-1}=(A^{-1})^T
        6. A可逆,则|A^{-1}|=\frac{1}{|A|}=|A|^{-1}
        7. n阶方阵B满足B^2=B,称矩阵B幂等矩阵

        矩阵的分块

        分块矩阵的概念

        1. 将矩阵用若干条纵线和横线将其分成许多个小矩阵,每一个小矩阵称为矩阵的子块,以子块为元素的形式上的矩阵称为分块矩阵。例如,A=\left( \begin{matrix} a & 1 &| & 0 & 0 \\ 0 & a & | & 0 & 0 \\ - &-&|&-&-\\1 & 0 &| & b & 1\\0 & 1 &| & 1 & b\end{matrix}\right)=\left( \begin{matrix} C_1 & C_2 \\ C_3 & C_4\end{matrix}\right)

        分块矩阵的运算

        1. 分块矩阵的加法:设矩阵A,B是同型矩阵,采用相同的分快法,有A=\left( \begin{matrix} A_{11} & ... & A_{1r} \\ ...\\A_{s1}. &.. &A_{sr} \end{matrix}\right),B=\left( \begin{matrix} B_{11} & ... & B_{1r} \\ ...\\B_{s1}&.... &B_{sr} \end{matrix}\right),其中,A_{ij}B_{ij}的行数相同、列数也相同,则A + B =\left( \begin{matrix} A_{11}+B_{11} & ... & A_{1r}+B_{1r} \\ ...\\A_{s1}+B_{s1} &... &A_{sr}+B_{sr} \end{matrix}\right),两个同型矩阵的分块方法相同,它们相加时,只需把对应的子块相加.
        2. 分块矩阵的数乘运算:A=\left( \begin{matrix} A_{11} & ... & A_{1r} \\ ...\\A_{s1}&... &A_{sr} \end{matrix}\right),\lambda为数,那么\lambda A=\left( \begin{matrix} \lambda A_{11} & ... & \lambda A_{1r} \\ ...\\\lambda A_{s1}&... &\lambda A_{sr} \end{matrix}\right).数乘分块矩阵时,用数遍乘子块即可
        3. 分块矩阵的乘法:Am\times l矩阵,Bl\times n矩阵,分块成A=\left( \begin{matrix} A_{11} & ... & A_{1t} \\ ...\\A_{s1}&... &A_{st} \end{matrix}\right),B=\left( \begin{matrix} B_{11} & ... & B_{1r} \\ ...\\B_{t1}&... &B_{tr} \end{matrix}\right),其中,A_{i1},A_{i2},...,A_{it}的列数分别等于B_{1j},B_{2j},...,B_{tj}的行数,那么AB=\left( \begin{matrix} C_{11} & ... & C_{1r} \\ ...\\C_{s1}&... &C_{sr} \end{matrix}\right).其中,C_{ij}=\sum_{k=1}^tA_{ik}B_{kj}(i=1,...,s;j=1,...,r).
          为了保证乘积的可行性,对矩阵A的列的分法一定要与矩阵B的行的分法一致,对A的行的分法和对B的列的分法可以任意.两个分块矩阵的乘法,以子块为元素,按矩阵的乘法法则相乘
        4. 分块矩阵的转置:A=\left( \begin{matrix} A_{11} &A_{12} & ... & A_{1r}\\A_{21} &A_{22} & ... & A_{2r} \\ ...\\A_{s1}&A_{s2}&... &A_{sr} \end{matrix}\right),则A^T=\left( \begin{matrix} A_{11} ^T&A_{21}^T & ... & A_{s1}^T\\A_{12}^T &A_{22} ^T& ... & A_{s2}^T \\ ...\\A_{1r}^T&A_{2r}^T&... &A_{sr}^T \end{matrix}\right).分块矩阵A的转置,不仅要把分块矩阵的每一“行“变成同序号的“列”,还要把矩阵A的每一子块取转置
        5. 分块对角矩阵:设矩阵A为方阵,若A的分块矩阵只有在主对角线上有非零子块,其余子块都为零矩阵,且非零子块都是方阵,即A=\left( \begin{matrix} A_1\\ &A_2\\&&...\\&&&A_s\end{matrix} \right),其中,A_i(i=1,2,...,s)都是方阵,那么称A分块对角矩阵
          分块对角矩阵具有下述性质:
          1. |A|=|A_1||A_2|...|A_s|;
          2. A_i(i=1,2,...,s)可逆,则A也可逆,且A^{-1}=\left( \begin{matrix} A_1^{-1}\\ &A_2^{-1}\\&&...\\&&&A_s^{-1}\end{matrix} \right)
          • 分块对角矩阵乘法性质:\left( \begin{matrix} A_1\\ &A_2\\&&...\\&&&A_s\end{matrix} \right)\left( \begin{matrix} B_1\\ &B_2\\&&...\\&&&B_s\end{matrix} \right)=\left( \begin{matrix} A_1B_1\\ &A_2B_2\\&&...\\&&&A_sB_s\end{matrix} \right)
          • 克拉默法则

            线性方程组的矩阵表示

            对于线性方程组\begin{equation} \left\{ \begin{aligned} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1, \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2, \\ ...\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n=b_m, \end{aligned} \right. \end{equation}A=\left( \begin{matrix} a_{11} &a_{12} & ... & a_{1n}\\a_{21} &a_{22} & ... & a_{2n} \\ ...\\a_{m1}&a_{m2}&... &a_{mn} \end{matrix}\right),x=\left( \begin{matrix} x_1\\x_2\\.\\.\\.\\x_n \end{matrix}\right),b=\left( \begin{matrix} b_1\\b_2\\.\\.\\.\\b_m \end{matrix}\right).利用矩阵的乘法,则线性方程组可以表示为矩阵形式Ax=b,称矩阵A为线性方程组的系数矩阵,矩阵B=(A,b)为线性方程组的增广矩阵

            克拉默法则及其应用

            1. 克拉默法则:对含有n个未知数、n个方程的线性方程组\begin{equation} \left\{ \begin{aligned} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1, \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2, \\ ...\\ a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n=b_n, \end{aligned} \right. \end{equation},如果系数矩阵的行列式|A|不等于零,则方程组有唯一解,并且x_j=\frac{|A_j|}{|A|},j=1,2,...,n,其中|A_j|=\left|\begin{matrix} a_{11} &...&a_{1,j-1}&b_1&a_{1,j+1} & ... & a_{1n}\\a_{21} &...&a_{2,j-1}&b_2&a_{2,j+1} & ... & a_{2n} \\ ...\\a_{n1}&...&a_{n,j-1}&b_n&a_{n,j+1}&... &a_{nn} \end{matrix}\right|
            2. 如果含有n个未知数、n个方程的线性方程组Ax=b的系数矩阵的行列式|A|\not= 0,则方程组Ax=b一定有解,且解是唯一的
            3. 如果含有n个未知数、n个方程的线性方程组Ax=b无解或者解不唯一,则其系数矩阵的行列式一定等于0
            4. 对线性方程组Ax=b,若常数项b=\left( \begin{matrix} b_1\\b_2\\.\\.\\.\\b_n \end{matrix}\right)\not=\left( \begin{matrix} 0\\0\\.\\.\\.\\0 \end{matrix}\right)(b_1,b_2,...,b_n不全为零),则称此方程组为非齐次线性方程组;当b=\left( \begin{matrix} b_1\\b_2\\.\\.\\.\\b_n \end{matrix}\right)=\left( \begin{matrix} 0\\0\\.\\.\\.\\0 \end{matrix}\right),即b_1=b_2...=b_n=0,则称此方程组为齐次线性方程组.齐次线性方程组Ax=0一定有解,至少有一个解x_1=x_2=...=x_n=0,称此解为齐次方程组的零解,否则称为非零解.
            5. 如果含有n个未知数、n个方程的齐次线性方程组Ax=0的系数矩阵的行列式|A|\not=0,则齐次线性方程组Ax=0只有零解
            6. 如果含有n个未知数、n个方程的齐次线性方程组Ax=0有非零解,则它的系数矩阵的行列式|A|=0

    http://blog.csdn.net/vi_nsn/article/details/77949019

  • 2
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值