范数 为何物?

在机器学习 & 深度学习中常常用到范数,那么范数到底是干什么用的呢?
其实范数的主要作用是衡量一个向量的大小,就是将向量映射到非负值的函数。直观讲就是:向量 x x x 的范数衡量 从原点到点 x x x 的距离。

形式上, L p L^p Lp 范数定义为:
∥ x ∥ p = ( ∑ i ∣ x i ∣ p ) 1 p \Vert x \Vert_p = \Biggl( \sum_i { \vert x_i \vert }^p \Biggr)^{\frac1p} xp=(ixip)p1


1、欧几里得范数 – L 2 L^2 L2范数

p = 2 p=2 p=2 时,我们称之为 L 2 L^2 L2 范数,也称为 欧几里得范数;常化简为 ∥ x ∥ \Vert x \Vert x

它表示从原点出发 到向量 x x x 确定的点 的欧几里得距离。


2、平方 L 2 L^2 L2 范数

平方 L 2 L^2 L2 范数也常常用来衡量向量的大小,可以见的 平方 L 2 L^2 L2 范数相比 L 2 L^2 L2 范数没有开方,因此可以简单的通过点积 x T ⋅ x x^T \cdot x xTx 计算


3、 L 1 L^1 L1 范数

L 1 L^1 L1 范数可以简化为
∥ x ∥ 1 = ∑ i ∣ x i ∣ \Vert x \Vert _1 = \sum_i {\vert x_i \vert} x1=ixi

当机器学习问题中 零和非零元素之间的差异非常重要时,通常会使用 L 1 L^1 L1 范数。 L 1 L^1 L1 范数经常作为表示非零元素数目的替代函数。


4、 L ∞ L^\infty L 最大范数

这个范数表示向量中最大幅值的元素的绝对值

∥ x ∥ ∞ = max ⁡ i ∣ x i ∣ \Vert x \Vert_\infty = \max_i {\vert x_i \vert} x=imaxxi


5、Frobenius 范数 – F范数

Frobenius 范数 与上述范数不同,Frobenius 范数是一个衡量 矩阵大小的范数,在深度学习中使用较多。

∥ A ∥ F = ∑ i , j a i , j 2 \Vert A \Vert _F = \sqrt{ \sum_{i,j}{a_{i,j}^2}} AF=i,jai,j2

即:矩阵 A A A 全部元素平方和的平方根。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViatorSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值