深度学习之神经网络结构——残差网络ResNet

本文探讨了深度学习中的残差网络ResNet,该结构因其能有效解决深度模型的退化问题而备受关注。ResNet通过引入残差块,使网络能够在不增加参数和计算复杂度的前提下,实现极深的网络层次,从而保持高精度。
摘要由CSDN通过智能技术生成

Deep Residual Learning for Image Recognition
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
arxiv, 2015

残差网络Residual Network自提出之日起就声名大振,成为大家在介绍深度学习近年上位史时不得不讲的网络结构。目前引用量已达1900。

阅读原文,会发现通篇出现次数非常多的一个词”degradation”,之前的深度学习模型深度加深到一定程度后如果继续加深会使得损失增加(准确率降低),下图表明了误差和模型深度之间的关系:

这里写图片描述

可以看到56层的模型无论是训练误差还是测试误差都比26层的要大。为什么会出现这种情况?假设现在有一个稍浅的性能比较好的网络,现在在它后面加上多层网络,并且我们假设添加的多层网络拟合的是恒等函数,那么新网络的性能应该和原网络一样好才对。可是实验证明新网络的准确率降低了,这说明额外的多层网络并不能很好地拟合恒等函数。总结成数学表达就是:假设现在我们想用多层网络拟合函数 H(x)=x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值