深度学习之物体检测——YOLO(三)_PyTorch实现

该博客介绍了使用PyTorch实现YOLO物体检测的过程,包括构建26层GoogLeNet网络,计算复杂损失函数,以及如何用训练好的模型进行物体检测。在实现中,作者详细阐述了计算grid_mask和box_mask矩阵的方法,并提到了在处理box表示时的注意事项。
摘要由CSDN通过智能技术生成

过程

构建26层网络

作者采用GoogLeNet作为网络结构,但是并不使用inception模块,而是采用1x1和3x3大小的滤波器进行替代。具体的网络结构请参考博客:深度学习之物体检测——YOLO(一)_介绍

计算损失

YOLO模型的损失函数比较复杂,包含三种损失:box损失、置信度损失、类别损失。具体的表达式也请查看上面指定的博客。

  • 首先应该根据标记信息计算grid_mask矩阵:即损失函数表达式中的 1obj

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值