【2024LLM应用开发】使用Chroma DB实现语义搜索的向量数据库系统

向量数据库的建立、使用方式、原理及应用:

目录

 向量数据库的建立:

 使用方式:

代码原理:

整体结构:

 为什么使用向量数据库:

 相关应用:

 原理深入解析:


 向量数据库的建立:

向量数据库的核心是将文本或其他类型的数据转换为高维向量。这个过程通常包括:

a) 文本嵌入:使用预训练的语言模型(如BERT、GPT等)将文本转换为dense vector(稠密向量)。
b) 索引构建:使用高效的索引算法(如HNSW、IVF等)来组织这些向量,以便快速检索。

在本例中,Chroma DB负责了这些底层操作,使得用户可以专注于数据的添加和查询。

 使用方式:

a) 添加数据:将文档和相关元数据添加到数据库中。

b) 查询:提供查询文本,数据库返回最相似的文档。
c) 过滤:可以基于元数据进行过滤,如本例中的章节过滤。 

举例说明:

  • 下面这段代码使用了向量数据库(Vector Database)的概念。向量数据库将文本转换为高维向量,并使用这些向量进行相似度搜索。
  • HNSW(Hierarchical Navigable Small World)是用于快速最近邻搜索的算法。
  • 余弦相似度用于衡量向量之间的相似程度。
  • 导入相关的库
import json
from IPython.display import JSON

from unstructured_client import UnstructuredClient
from unstructured_client.models import shared
from unstructured_client.models.errors import SDKError

from unstructured.chunking.basic import chunk_elements
from unstructured.chunking.title import chunk_by_title
from unstructured.staging.base import dict_to_elements

import chromadb
  • 创建和重置向量数据库客户端:
client = chromadb.PersistentClient(path="chroma_tmp", settings=chromadb.Settings(allow_reset=True))
client.reset()

这里使用Chroma DB创建了一个持久化的客户端,数据存储在"chroma_tmp"目录下。allow_reset=True允许重置数据库。client.reset()重置了数据库,清除所有现有数据。

  • 创建集合:
collection = client.create_collection(
    name="winter_sports",
    metadata={"hnsw:space": "cosine"}
)

在数据库中创建了一个名为"winter_sports"的新集合。metadata={"hnsw:space": "cosine"}指定使用余弦相似度作为向量空间的度量方式。

  • 添加文档:
for element in resp.elements:
    parent_id = element["metadata"].get("parent_id")
    chapter = chapter_ids.get(parent_id, "")
    collection.add(
        documents=[element["text"]],
        ids=[element["element_id"]],
        metadatas=[{"chapter": chapter}]
    )

这个循环遍历resp.elements中的每个元素,将其添加到集合中。每个文档都有一个唯一的ID和相关的元数据(这里是章节信息)。

  • 查看集合内容:
results = collection.peek()
print(results["documents"])

peek()方法返回集合中的一些样本文档。这里打印出这些文档的内容。

  • 查询集合:
result = collection.query(
    query_texts=["How many players are on a team?"],
    n_results=2,
    where={"chapter": "ICE-HOCKEY"},
)
print(json.dumps(result, indent=2))

这里执行了一个查询,搜索与"How many players are on a team?"最相关的2个结果,并且只在"ICE-HOCKEY"章节中搜索。结果以JSON格式打印出来。

这种结构允许灵活地管理和查询大量文本数据,特别适合需要语义理解的应用场景。

 为什么使用向量数据库:

a) 语义搜索:传统的关键词搜索无法捕捉语义相似性,而向量搜索可以。

b) 高效性:对于大规模数据,向量搜索比全文搜索更快。
c) 灵活性:可以搜索任何可以表示为向量的数据,不限于文本。
d) 多模态:可以结合文本、图像等多种类型的数据。

 相关应用:

a) 智能问答系统

b) 推荐系统
c) 图像搜索
d) 相似文档检测
e) 异常检测
f) 聊天机器人知识库

 原理深入解析:

a) 文本嵌入:

  • 使用如Word2Vec、BERT等模型将词或句子映射到高维空间。
  • 在这个空间中,语义相似的文本会更接近。

b) 相似度计算:

  • 常用余弦相似度、欧氏距离等度量方法。
  • 余弦相似度计算两个向量的夹角余弦值,值越大表示越相似。

c) 索引算法:

  • HNSW(Hierarchical Navigable Small World):
    构建一个多层图结构,在搜索时可以快速缩小范围。
  • IVF(Inverted File Index):
    将向量空间分割成多个单元,搜索时只需检查部分单元。

d) 近似最近邻搜索:

  • 为了提高效率,通常使用近似算法而非精确搜索。
  • 牺牲一定的精度来获得显著的速度提升。

e) 维度诅咒及其解决:

  • 高维空间中,点与点之间的距离会变得不那么有区分度。
  • 通过降维技术(如PCA)或特殊的索引结构来缓解这个问题。

<think>好的,用户想了解如何搭建DeepSeek加上BGE-M3,以及选择什么样的向量数据库。首先,我需要确认这两个组件的具体所指。DeepSeek可能是指深度求索公司开发的大模型,比如DeepSeek-R1或者他们的其他模型。而BGE-M3是北京智源研究院发布的BAAI General Embedding-M3,这是一个支持多语言、多模态、多粒度的文本嵌入模型,适合作为检索模型的嵌入层。 用户的需求可能是构建一个结合了大模型和高效检索的RAG(检索增强生成)系统。需要先明确步骤:首先加载和微调BGE-M3模型,将其作为文本编码器生成嵌入向量;然后选择合适的向量数据库存储和检索这些向量;接着将检索结果输入到DeepSeek大模型中进行生成;最后整合整个流程并优化性能。 在选择向量数据库时,用户可能需要考虑几个因素:数据规模、查询性能、扩展性、社区支持和易用性。常见的选项包括FAISS、Milvus、Pinecone、Chroma等。需要根据具体需求分析每个数据库的优缺点,比如FAISS适合中小规模数据,而Milvus适合分布式和大规模场景。用户可能需要处理高并发的查询,或者需要低延迟,这些都会影响选择。 接下来,用户可能对如何具体部署和集成这些组件有疑问。例如,如何将BGE-M3生成的向量存入数据库,如何设计检索逻辑,以及如何将结果传递给DeepSeek模型。可能需要代码示例或者步骤说明,比如使用Hugging Face Transformers加载模型,生成嵌入,然后用向量数据库的SDK进行存储和查询。 另外,用户可能关心是否需要微调BGE-M3以适应特定领域的数据,或者如何优化检索的准确性和速度。比如,调整嵌入模型的参数,或者对向量数据库进行索引配置,比如使用HNSW算法。 最后,需要考虑整个系统的架构设计,比如是否需要分布式部署,如何处理高可用性,以及监控和维护方面的问题。可能需要建议一些最佳实践,比如定期更新嵌入模型、监控数据库性能、进行负载测试等。 总结来说,用户需要一个从模型准备、数据库选择到系统搭建的完整指南,可能需要分步骤详细说明,并针对不同场景推荐合适的工具和配置。同时,要注意可能遇到的挑战,如模型兼容性、数据库性能调优、系统延迟等,并提供解决方案或参考资源。</think>搭建 **DeepSeek + BGE-M3** 的组合主要用于构建高效的检索增强生成(RAG)系统,结合大语言模型(DeepSeek)的生成能力和嵌入模型(BGE-M3)的语义检索能力。以下是关键步骤和向量数据库选择建议: --- ### **一、搭建流程概述** #### 1. **模型准备** - **BGE-M3**(Embedding 模型) 作用:将文本转换为高维向量,支持多语言、多模态、多粒度检索。 使用方式: - 通过 Hugging Face 直接加载模型: ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("BAAI/bge-m3") tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-m3") ``` - 输入文本生成向量: ```python inputs = tokenizer(texts, padding=True, return_tensors="pt") embeddings = model(**inputs).last_hidden_state.mean(dim=1) ``` - **DeepSeek**(生成模型) 作用:基于检索结果生成高质量回答。 使用方式: - 通过 API 调用(如 DeepSeek-API)或本地部署模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-llm-7b") tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b") ``` #### 2. **向量数据库选择** 根据场景需求选择数据库: | 数据库 | 特点 | 适用场景 | |--------------|----------------------------------------------------------------------|-----------------------------| | **FAISS** | 轻量级、内存计算,适合中小规模数据;无需服务化部署。 | 本地快速验证、小规模应用 | | **Milvus** | 分布式、高扩展性,支持海量数据;提供 RESTful API 和 SDK。 | 企业级生产环境、高并发场景 | | **Pinecone** | 全托管云服务,自动管理索引和扩展;低运维成本。 | 云原生应用、快速搭建 | | **Chroma** | 轻量级、易集成,适合简单应用;支持本地和内存模式。 | 原型开发、小规模实验 | **推荐组合**: - **快速验证**:BGE-M3 + FAISS/Chroma - **生产环境**:BGE-M3 + Milvus/Pinecone #### 3. **系统集成流程** 1. **数据预处理**:将文档切分(chunking),使用 BGE-M3 生成向量。 2. **向量入库**:将向量和元数据存入数据库(如 Milvus)。 3. **检索逻辑**:用户提问时,用 BGE-M3 编码问题,检索 Top-K 相关文档。 4. **生成回答**:将检索结果作为上下文,输入 DeepSeek 生成最终答案。 ```python # 示例代码框架 query = "用户问题" query_embedding = bge_m3.encode(query) # 生成查询向量 results = vector_db.search(query_embedding, top_k=5) # 检索 context = "\n".join(results) answer = deepseek.generate(f"基于以下上下文回答:{context}\n问题:{query}") ``` --- ### **二、关键优化点** 1. **Embedding 模型调优**: - 对 BGE-M3 进行领域适配微调(如使用 LoRA)。 - 调整文本分块策略(chunk size 和 overlap)。 2. **检索增强策略**: - 混合检索:结合语义向量 + 关键词(BM25)提升召回率。 - 重排序(Rerank):对检索结果二次排序(如使用 BGE-M3 的 colbert 重排)。 3. **向量数据库配置**: - 索引类型:HNSW(高精度)或 IVF(快速检索)。 - 分片与副本:分布式部署提高吞吐量(Milvus 支持)。 --- ### **三、部署建议** - **轻量级方案**:Docker 部署 Milvus + FastAPI 封装服务。 - **云原生方案**:AWS/GCP 上使用 Pinecone + 异步调用 DeepSeek API。 - **性能监控**:跟踪检索延迟(P99)、召回率(Recall@K)和生成质量(ROUGE)。 --- ### **四、常见问题** - **延迟高**:优化索引参数(如 HNSW 的 `ef_search`)、使用 GPU 加速 Embedding。 - **数据更新**:支持增量更新索引(Milvus 支持动态数据插入)。 - **多模态支持**:BGE-M3 可扩展为图像/文本混合检索(需适配多模态编码)。 通过合理选择工具链和优化流程,可以构建高性能的 DeepSeek + BGE-M3 RAG 系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值