loss与val loss的关系

  首先我们先谈谈loss和val loss 的区别:
  loss:训练集整体的损失值。
  val loss:验证集(测试集)整体的损失值。
  一般来说,我们在训练的一个模型的时候,我们都会把一个样本划分成训练集和验证集。如果我们按照训练集和验证集9:1的比例来划分,那么当我们在训练模型计算出来的loss值就会分为训练集总体loss以及测试集val loss。两者之间有大致如下的关系:
  当loss下降,val_loss下降:训练正常,最好情况。

  当loss下降,val_loss稳定:网络过拟合化。这时候可以添加Dropout和Max pooling。

  当loss稳定,val_loss下降:说明数据集有严重问题,可以查看标签文件是否有注释错误,或者是数据集质量太差。建议重新选择。

  当loss稳定,val_loss稳定:学习过程遇到瓶颈,需要减小学习率(自适应网络效果不大)或batch数量。

  当loss上升,val_loss上升:网络结构设计问题,训练超参数设置不当,数据集需要清洗等问题,最差情况。

lossval_loss是在训练神经网络模型时用来评估模型性能的指标。loss表示在训练集上的损失值,而val_loss表示在验证集上的损失值。损失值越小,表示模型的预测结果与真实值之间的差距越小,即模型的性能越好。通常情况下,我们希望训练过程中的lossval_loss都能随着训练的进行逐渐减小,这表示模型在学习和泛化能力上都有不错的表现。然而,如果在训练过程中loss下降而val_loss上升,可能意味着模型开始过拟合,即在训练集上表现良好但在验证集上表现较差。此时,我们可以考虑停止训练,进行数据增强或正则化等操作来防止过拟合的发生。如果lossval_loss都不再下降,可能表示模型已经达到了学习的瓶颈,此时可以尝试调整学习率或批量数目来进一步优化模型。如果loss不变而val_loss下降,可能意味着数据集存在问题。如果lossval_loss都上升,可能表示模型结构设计不当,训练超参数设置不当,或者数据集经过清洗。通过观察lossval_loss的变化趋势,我们可以对模型的训练过程进行评估和调整。 #### 引用[.reference_title] - *1* [关于神经网络的模型训练时lossval_loss变化的问题(笔记整理)](https://blog.csdn.net/m0_60166035/article/details/123426783)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Tensorflow画lossval_loss 、accuracy和 val_accuracy的图(便于分析)](https://blog.csdn.net/weixin_45532899/article/details/124329669)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值