人机混合与人机融合的区别


人机混合常常是人+机(侧重事实性数理物理结合,价值性结合较少)



人机融合往往是人*机(既包括事实,也涉及价值,既有数理物理交互,也有心理伦理交流)



另外,个性的“利己”追求常常会不自觉造成共性的“利他”效应,共性的“利他”追求也往往会无意识造成个性的“利己”局面。或许,这对于群体智能逻辑(不同于个体智能逻辑)很有启示。

人物(机)环境三者生万物,有显性有隐性,有阴有阳,态势感知、计算计、功能力也都有显性隐性阴阳之分,现在的人工智能及其相关领域大都只研究显性的、阳的一面,故意或不故意地忽略了隐性的、阴的一面,所以对各种数据、算法、算力(包括量子计算)、知识抱有“科学”的怀疑态度,或许有些不识时务,也很难理解“俊杰”的确切含义。

一般的语言和特殊的概念常带有意识形态暗示。但正如维特根斯坦所说,大多数情况下,一个词的含义是它的用法。其实一个概念/词就是当时的上下文,离开背景,这些词、词组、概念、定义会索然无味。
### 人机混合增强智能在电力系统负荷预测中的方法 #### 方法概述 人机混合增强智能通过融合人工智能算法专家系统的优点,旨在提升电力系统负荷预测的精度可靠性。这种方法不仅依赖于先进的机器学习模型来处理大量复杂的数据集,同时也引入了领域专业知识作为辅助决策工具,从而弥补纯自动化解决方案可能出现的理解偏差。 #### 数据预处理阶段 在进行负荷预测之前,通常会先对原始数据进行清洗、去噪平滑化处理。这一步骤可以有效去除异常值以及不完整的记录,确保后续建模过程所使用的输入更加可靠[^1]。 #### 特征工程环节 特征选择是影响最终预测性能的关键因素之一。基于时间序列分析理论,可以从多个维度提取有用的信息,比如温度变化趋势、节假日效应等外部变量;同时利用统计学手段挖掘内部规律性的模式,如日周期性周季节性成分。此外,还可以借助深度神经网络自动发现潜在关联特性,进一步丰富描述空间[^2]。 #### 预测模型构建部分 针对不同的应用场景需求,可以选择合适的回归类或者分类器来进行训练。常见的有支持向量机(SVM),随机森林(RF),长短记忆网络(LSTM)等等。值得注意的是,在此过程中应当充分考虑计算资源消耗情况,并权衡模型泛化能力解释性强弱之间的关系[^3]。 #### 结果评估机制 完成上述工作之后,还需要建立一套完善的评价体系用于衡量所得结论的好坏优劣之处。常用的指标包括均方根误差(MSE),平均绝对百分比误差(MAPE)等定量度量标准。更重要的是要结合实际业务背景给出定性判断依据,以便更好地指导实践操作[^4]。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error # 加载并准备数据 data = pd.read_csv('load_data.csv') X = data.drop(columns=['target']) y = data['target'] # 划分训练集测试集 X_train, X_test, y_train, y_test = train_test_split(X, y) # 构建随机森林模型 model = RandomForestRegressor() model.fit(X_train, y_train) # 进行预测 predictions = model.predict(X_test) # 计算MSE MAPE mse = mean_squared_error(y_test, predictions) mape = mean_absolute_percentage_error(y_test, predictions) print(f'Mean Squared Error: {mse}') print(f'Mean Absolute Percentage Error: {mape:.2%}') ``` #### 实际案例分享 某地区电网公司尝试将人机协作理念融入到短期用电量估计工作中。具体做法是在传统物理仿真基础上叠加了一层由卷积神经网络(CNNs)驱动的空间分布识别模块,专门负责捕捉地理坐标附近的气象条件差异所带来的细微波动。经过一段时间试运行后证明该方案确实提高了整体准确性约8个百分点以上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值