认知经济学综述

640?wx_fmt=jpeg

一、什么是认知经济学

经典经济学的传统核心建立在三个重要的基础之上:参与人完全理性、博弈论中均衡的概念以及一般均衡理论。如果某个参与人可以被描述为最大化某一目标方程的话,那么在经典经济学中他就是“理性的”。

认知是信息处理的过程,包含了对信息所有方面的处理,一个认知系统也是一个处理信息的系统。如果这个系统属于某个单独个体,即人体认知;如果这个系统分布在大量的个体之中,即分布性认知。认知过程中处理信息不仅包括象征性的符号,而且还包括来自认知环境中的所有形式的复杂信号。对信息的处理既指从未加工信息开始的自下而上式的处理方式,也指从说明性的假设开始的自上而下式的处理方式。

各种现代经济学理论通过相互联系,正在形成一个唯一的复杂(自)适应系统。这个系统的约束条件不仅包括自然条件约束、供需平衡约束、人力资源再生约束,而且还包括在生产与交换中个体所受到的分布性认知约束。社会认知过程也会受到这些认知性约束的影响。

经济学与认知科学可以通过两种方式互相合作。第一种是借用认知科学中高水平符号化认知行为的研究结果。西蒙在有限理性研究方面正是这样做的,他扩展了可以被称为理性的行为的范围,他通过认知资源的稀缺性拯救了理性行为。第二种方式关注神经元科学与学习过程。哈耶克在这方面的贡献不仅局限于神经元科学,实际上他对整个科学的影响都非常巨大。这两种方式之间并没有长期性的冲突:各类科学学科都正在越来越多的将它们自身置于其他相邻学科的事实与约束置中。这两种方式可以结合在一起考虑,就如同认知科学正在增加与认知心理学和神经元科学的合作一样。这种合作会产生一种趋同的解释,这种解释使我们能更深入地理解认知过程。

二、博弈论

1994年,数学家冯·诺依曼和经济学家摩根斯坦合作的前瞻性的著作《博弈与经济行为理论》详细阐述了博弈论;20世纪50年代,随着主要的均衡概念—纳什均衡概念的提出,博弈论开始了第一次的发展;直到70年代将时间和不确定性进行整合引入均衡概念后,博弈论有了第二次大发展;随着参与人信念的内生化和进化博弈论的出现,在90年代又有进一步的发展。

如果每个参与人的可供选择的行动数量是有限的,那么这个博弈也是“有限的”。其中,零和博弈是博弈论的一个概念,属非合作博弈,指参与博弈的双方,在严格竞争下,一方的收益必然意味着另一方的损失,博弈各方的收益和损失相加的总和永远为“零”。双方不存在合作的可能。零和博弈的结果是一方吃掉另一方,一方的所得正是另一方的所失,整个社会的利益并不会因此而增加一分;双胞胎博弈是指对于博弈中的每个结果而言,参与人的效用都是一样的(完全收敛于一点的兴趣);对称博弈中参与人的行动集完全相同,而且当参与人互相采取对方的行动时,他们也获得对方的效用。经典的对称博弈即“囚徒困境”。

第一个均衡的概念是“弱占优策略均衡”,与之相关的均衡状态被定义为每个参与人都选择一个占优策略的结果。这种状态是不可能存在的,如果它存在,那么弱占优关系是严格的,这种均衡通常是唯一的,但弱占优关系弱则均衡可能是复合型的。

在囚徒困境中,认罪对于每个参与人而言都是严格占优策略。对于每个参与人而言,不管他的对手选择如何,认罪总是可以使得他的效用增加。因而在占优策略里,存在一个唯一的均衡状态,也就是两个参与人都认罪。这个结果也是唯一的复杂均衡。然而,它并非帕累托最优,因为如果两个参与人都不认罪,他们的效用可以更大。这种均衡对帕累托最优的背离带来了参与人之间最基本的“合作问题”。

第二个均衡概念是“纳什均衡”,它将一个均衡状态(si*sj*)定义为每个参与人选择他竞争对手均衡策略时的最佳反应的结果:Uisi*sj*≥Uisisj*)。在这种状态下,没有参与人能从单方面的背离中获益,它是参与人可以自由独立做选择时实现稳定均衡的最低条件。在囚徒困境中,唯一的纳什均衡是两个参与人都认罪的结果。

第三个均衡概念是“贝叶斯均衡”。在均衡点上,一个参与人的条件策略是另一个参与人条件策略的最佳反应。有限博弈通常有一个贝叶斯均衡,可能包含混合策略。

对不同的博弈而言,信息的价值既可能是负的也可能是正的。然而,我们可以证明在任何博弈中,对于受到它的那个参与者而言,隐秘信息的价值总是为正的,我们可以回顾自然选择的问题,其中信息的价值总是为正的。

在讨论博弈时,我们将考虑三种信念,这三种信念与三个基本实体相联系:自然(带有机械行为)、其他参与者(带有理性行为)、参与者自身(同样是理性行为)。事实性信念关注的是自然在以前的状态或参与者在以前的行为。结构性信念关注的是实体的永久特性、自然的机能规则或者参与者的选择特性。策略性信念关注的是自然在未来的状态和参与者在未来的行为(被称为推测)。概率性信念结构被用来表述大多数的不确定情况,比如,其他人的特征被归类为各种“类型”而每种类型都被赋予一定的概率。但是,集合性的不确定性可能也会被使用,比如,参与者如果不能分辨其他参与者在以前的行为,那么就会把这些行为集合为一个信息组。另外,我们认为参与者了解自己以前的行为、自身的特性和自己在将来的行为。

随着时间发展,不同类型的信念将会按照一定的顺序被修正。首先,随着事情的发生而产生了新的信息,事实性信念将会被直接修正。例如,将会按照真实情况中的信息把自然状态调整得更加精确。第二,通过反绎推理,按照对事实的观察来调整结构性信念。例如,通过观察其他参与者在以前的行为并借助理性假设,我们可以推断出其他参与者的偏好(带有一定的多样性)。第三,策略性信念是根据结构性信念来形成的。例如,通过理性假设并依靠信念和偏好等信息,我们可以预测参与者在未来的行为。事实上,在用博弈树表述的任意动态博弈中,信念是按照时间顺序被修正的,而所预测的行为则按照相反方向在思维上进行修正。更精确地说,反向的归纳程序假定末端结的参与者将采取最优行动,其前一个决策结的参与者在知道末端结参与者的行为的情况下选择自己的最优行动,并依次一直到博弈树根结的决策者。

因为参与者是在参与策略性的互动,每个参与者都需要形成关于其他参与者信念的信念,同时也形成关于其他参与者特性的信念。当每个参与者都相信某种陈述时,这一陈述就是共同信念。当每一个参与者都相信某种陈述,相信其他参与者也相信这种陈述并一直如此一直到第k个,我们就可以获知共享信念的分布水平为k。当陈述的交叉信念总是被满足并一直到无限水平时,这时候的信念就是共同信念。共同信念不是按照等级被定义的,而可能是反身定义的:如果陈述是属于共同信念的共享信念,那么它就是一个共同信念。事实上,第二个定义是第一个定义的必要条件,但反之不成立。

如果博弈论中定义的众多均衡决策结是通过非常聪明的参与者单独推理而获得的,那么这些决策结将会被进行认知上的调整。存在两个基本的假定认为博弈的结构和参与者的理性是一种共同信念甚至是共同知识;通过使博弈达到更强均衡结的附加假设条件将使上述两个假定变得完备。在静态博弈中,基本假定条件将强占优策依次排除;因为参与者独立行动是一种共同知识,参与者将会获得理性化的策略;因为概率性决策是一种公认的优先条件,参与者将会获得相关性均衡;但是纳什均衡是很难达到的,因为纳什均衡假定参与者的预期也是一种共同信念。对动态博弈来说,基本假定必须通过隐含假定而得以完备,从而获得子博弈完美均衡。此外,如果均衡结可以通过认知条件被确认,那么将会需要其他条件来在多样化条件下选择一个特定的均衡状态。例如,在选择一些“焦点”状态或选择规则时就需要用到文化“传统”。

三、决策论

1、思维过程

决策人通常会面对三个选择特性:“机会”界定了可执行的行动集合,“信念”可以对每个行动的结果进行预测,“偏好”对行为结果进行评价和计算并进行综合排名。行为人是不可能直接获知这三个特性的,但是它们仍然被认为是决定决策人选择的真实变量。决策人面对的环境是由两部分组成的:一是自然,包含了实物要素并具有一个决定性行为,二是其他行为人,他们按照与决策人相同的方式行动。关于自然的状态,决策者可以被赋予一个逐步减弱的信念结构:确定、概率型不确定、集合型不确定(存在一组状态)、完全不确定。

关于决策者理性存在两个概念。认知理性是指接收的信息和构建的信念之间是互相满足的。其强形式认为决策者关于宇宙的表述与模型计算出来的表述是相同的,并可以构成“理性预期”。工具理性是指可采用的方法和后续目标之间是互相满足的。其强形式认为,按照给定的信念(贝叶斯理性),决策者将会选择使其效用最大化的行为。理性的两种形式都会介入到思考过程,第一种形式构建了决策问题,而第二种形式则解决了这些问题。需要解决的问题是:判断认知理性是否就是理性的原始形式,还是在某种方式下可以被弱化为工具理性。

在面对自然进行选择时,概率型不确定性下的常规决策模型将被扩展以保持强的工具理性,但是关于自然的信念仍是弱的。例如,决策者可能总是会使期望效用最大化,但是确信型信念却取代了概率型信念,其中确信性是概率的一种非附加(两层次)扩展。在完全不确定状态(允许未预期到的意外事件出现)下是很难找到决策规则的,尤其是在需要精确定义预警原则的情况下。决策人可能都不了解他自己的偏好;在这种情况下,决策人将不会再选择最优化效用,而是试图让其行动可以保证在一定概率下实现平均效用(与决策模型将不再关联)。此外,在面对其他行为者进行选择时(策略型不确定),需要证明经典规则的使用是适用的,因为经典规则中把其他行为人看作是固定规则行为人。

在面对自然进行选择时,完全理性总是会被转变为决策人的有限理性,因为决策人的信息处理能力是有限的。相比完全理性只是单纯地被定义,工具理性则有一整组模型可供使用。例如,“满意法”模型中假定行为人会选择第一个能够达到其部分目标需求水平的行动;在动态中,如果可以容易地找出所需行为则需求水平会被提高,如果找出所需行为很难,则需求水平将会被降低。但是,因为认知限制和这些决策规则之间不存在直接的联系,我们会使用关于有限认知理性的模型。例如,自动化模型中决策人只拥有关于内部状态的有限数据或者受限于过高的计算成本。

2、学习过程

决策人需要考虑互相关联的两类行为:“操作行为”可以让其达到目标,“信息行为”可以让其获取达到目标所需的信息。在一个重复决策问题中,信息可以通过三种途径获得。在一个实验中,决策人从一个特定的外部来源购买信息,即进行一个有成本的基本信息行为。在被动实验中,信息是操作行为的副产品,决策人可以免费获得;这种情形下决策人会对以前的行为状态或者以前的效用进行观察。在主动实验中,决策人会主动从进行中的操作行为中分离出一些信息,并对环境进行检验;这种情形下,决策人会减少一些短期效用,通过之后对信息的使用来增加长期效用,从而得以弥补。

在实验中,可以对外部来源所提供的信息价值进行判断,从而与决策人获取信息的成本进行比较。操作行为的价值被定义为获取信息之后和之前行动所带来的效益间的差额。在面对自然进行选择时,贝叶斯型决策人会接收到关于自然状态的部分信息(概率型),我们可以看出信息的价值总是正的。这意味着在被动环境中给予决策人的信息只能使他比平均水平更好。当决策人有一个非预期效用决策原则或者收到非局部信息时,结果就不是这样了。当然,信息价值的概念可以被扩展到被动或主动实验所获取的信息中。

在主动实验中,决策人需要在研究和开发之间做出权衡。既可以尽可能地对已获取的信息进行开发,也可以进行研究以获取新的信息作为未来的投资。在一个面对自然的重复选择中,某些情况下可以考虑存在一种最优的权衡结果,这种权衡结果可以释放尽可能多的有价值信息。例如,在一个“武装歹徒”实验中,决策者必须选择一个杠杆而其收益是带有一定概率的(决策者并不知道概率大小),最优的策略是根据每个杠杆以前的表现而分别赋予这两个杠杆一个指数,最终选择那个指数较高的杠杆。但是,某些合理的权衡结果却可以被包含在短期非最优决策规则中。例如,在离散选择模型中,决策者会选择一个概率可以随其效用增加而增加的行为,整个决策过程中,研究处于开始阶段而开发处于结束阶段。

在重复决策情形中,引入了两类基于有限理性的学习机制。在认知性学习机制中,决策人拥有关于其所处环境的结构性信念,通过获取以前状态(或行动)的信息,决策者对环境进行修正。例如,决策者会观察各种状态(或行动)在以前的发生频率,进而预期未来的状态(或行动)也会按照相同的概率发生。

四、经济交互的结构:个体理性和群体理性

经济活动参与人会按照许多不同的方法进行交互。特定的人也许只能与另外一些特定的人交易。有些人可能试着从其他人的行为中获取信息;有些参与人也许只和群体的某个子集中的人有过沟通。人们也许会根据和他们所接触的其他人的期望来改变自身的预期函数。

分析这类问题的第一种方法是使用经典经济学的标准框架,定义一种考虑交互行为的合适类型的静态均衡。同样的东西在某一市场上以不同的价格出售,买方必须和卖方进行交互来搜寻最优价格。然而,搜寻需要成本,因此买家需要一个标准,以权衡额外询问一个卖方所带来的收益和成本。经典的法则是买方计算出一个保留价格,而且一直搜寻,直到发现一个比保留价格还低的价格才购买该商品。为了实现这一目标,他需要知道价格的分布。

经济活动中的很多交互从本质上是讲随机的,第一个明确考虑随机交互问题是佛尔莫(Foellmer,1974),他发现如果参与人的特征,例如偏好,虽然是随机的,但取决于其他人的特征,那么即使参与人数量很大也并不足以消除整体层面上的不确定性。近期,弗尼和里皮(Forni and lippi1996)研究发现,在宏观动态模型中,个体微观行为具有的某一特征,在总体层面上会发生反转。当个体对某种独立的特定冲击做出一种反应,但可能会对普遍的外部冲击做出另一种反应。

到目前为止,我们一直假设参与人知道他们在和谁交互,如果我们是在博弈论框架下讨论的话,即参与人均知道其对手是谁。而现实生活中的一些情境下,很难判断对手是谁。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值