StableDiffusion学习笔记-LoRA Block Weight插件(LORA分层控制,微调)

在学习插件之前我们先简单了解一下LoRA模型,LoRA模型是现在非常流行的小模型,区别于大模型,它可以用更小的体积,更快速更低成本的训练来满足我们对图片风格的追求,可以让我们轻松画出特定的人物,物品,特殊的笔触和特殊的画风或风格,属于一种特殊训练的子集。

训练LoRA的过程简单理解就是在大模型的基础上额外增加一些训练层,如外貌特征、衣服特征和环境特征等。LoRA 内部其实是可以细分为 17 个 Blocks(层),每一个 Block(层) 都有它的一些作用,例如某一个 Block 是控制脸部,另一个 Block 是控制姿态等等。就像这样:

img

img

可以看出,其实LoRA的工作流程里面的17层可以分为3个部分:BASE(开关层)、IN(输入层)、MID(中间层)和OUT(输出层),权重值0就是完全不生效,1就是完全生效,那么我们就可以通过调整这17个0-1的数字来对LoRA模型进行微调了。*理解LoRA的分层概念和每层的作用对我们以后训练LoRA、调试LoRA会有非常大的帮助!*

LoRA Block Weight(LoRa区块权重配置)插件就是为我们提供了一个可以轻松调整LoRA各**Block(层)权重数值的插件。

**

什么时候使用LoRA Block Weight?

有时候LoRA效果很好但是有一些服装或者背景想要更改,加上提示词发现效果不好,降低LoRA权重又使图片不符合预期,分层控制就发挥大作用了,把服装权重降到0,提示词就可轻松换装,对于不同LoRA叠加使用也可以分层控制,比如服饰,背景,脸分别采用不同LoRA模型,分层控制不同LoRA作用的层,就不会相互干扰崩坏啦。又或者是你想微调每一部分(人脸服饰等)的作用效果。

插件安装

打开WebUI,拓展页面,从网址安装,然后输入一下网址,点击安装:

https://github.com/hako-mikan/sd-webui-lora-block-weight

界面和功能

安装好插件后,我们就可以在插件中找到LoRA Block Weight:

img

使用方法

启用插件后,在正向提示词输入框中添加你需要的LoRA,通过在强度值后键入 “:lbw=” 来输入权重或标识符。可以在权重设置中编辑标识符。如下:

<lora:"lora name":1:lbw=1,1,1,0,0.5,0.5,0,0,0,0,0,0,0,0,0,0,0>.直接在提示词中修改LoRA中17层的权重值<lyco:"lora name":1:1:lbw=OUTS> 使用标识符(预设)来设置权重,OUTS代表仅上色风格生效

例如:我在二次元通用大模型中添加天气之子的LoRA,并开启LoRA Block Weight,在提示词中直接修改各Block(层)的权重(将最后5层改为0,其他为1,让上色风格不生效):

<lora:20230919-1695103949936:1:lbw=1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0>

img

我们使用预设好的标识符试一下哦:

img

Start、Stop 步骤:

可以使用“start=步数”来指定LoRA开始生效的步数,使用“stop=步数”来指定LoRA停止生效的步数,我们就可以控制LoRA产生的影响:

<lora:"lora name":lbw=ALL:start=10>从第10步开始生效<lora:"lora name":lbw=ALL:stop=10>到第10步停止生效<lora:"lora name":lbw=ALL:step=5-10>5-10步生效

随机值(随机):

使用 R 可以让权重在 0~1 之间的3位小数随机,使用 U 则是 -1.5~1.5之间的3位小数随机,例如:

<lora:20230919-1695103949936:1:lbw=1,1,1,1,1,1,1,1,R,R,R,R,R,R,R,R,R>

随机后的值:

img

特殊值(动态):

变量 X。比如我们将 X,X,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 设置为预设BG,那么我在调用BG标识符的时候就可以快速设置X的值,比如:

<lora:20230919-1695103949936:1:lbw=BG:0.8>  BG预设里面的X=0.8

XYZ绘图功能

比如我们想改变IN05到OUT05层的值来对比效果:

img

提示词中加入lbw=XYZ,点击生成:

<lora:20230919-1695103949936:0.5:lbw=XYZ>

img

权重设置

权重设置可以让我们修改预设的标识符,也可以新增标识符:

img

最后,大家有什么Stable Diffusion学习的疑问在评论区留言吧!

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值