前景理论(Prospect Theory)

前景理论(Prospect Theory)由Daniel Kahneman和Amos Tversky在1979年提出,用以描述人在面对风险决策时的心理过程。该理论包含两个主要组成部分:价值函数和权重函数。以下是一个简单的数学实例来说明前景理论的应用:
### 实例分析
假设有一个人面临以下两个选择:
**方案A:**
- 有50%的概率获得2000元,有50%的概率获得1000元。
**方案B:**
- 有50%的概率获得2000元,有50%的概率什么也得不到。
### 计算预期感知价值
1. **价值函数(V(x))**:
   - 对于增益区间(x ≥ 0):$ V(x) = x^\alpha $
   - 对于损失区间(x < 0):$ V(x) = -\lambda(-x)^\beta $
   - 其中,α、β和λ是参数,通常取值α=0.88,β=0.9,λ=2.25。
2. **权重函数(w(p))**:
   - $ w(p) = \frac{p^\gamma}{\left(p^\gamma + (1-p)^\gamma\right)^{1/\gamma}} $
   - 其中,γ通常取值0.61。
3. **计算方案A的预期感知价值**:
   - 预期感知价值 = 0.5 * $ w(0.5) $ * $ V(2000) $ + 0.5 * $ w(0.5) $ * $ V(1000) $
   - $ w(0.5) $ = $ \frac{0.5^\gamma}{\left(0.5^\gamma + (1-0.5)^\gamma\right)^{1/\gamma}} $
   - $ V(2000) $ = $ 2000^\alpha $
   - $ V(1000) $ = $ 1000^\alpha $
4. **计算方案B的预期感知价值**:
   - 预期感知价值 = 0.5 * $ w(0.5) $ * $ V(2000) $ + 0.5 * $ w(0.5) $ * $ V(0) $
   - $ V(0) $ = 0(因为没有收益)
### 示例计算
1. **计算权重函数w(0.5)**:
   - $ w(0.5) $ = $ \frac{0.5^{0.61}}{\left(0.5^{0.61} + (1-0.5)^{0.61}\right)^{1/0.61}} $
2. **计算价值函数V(2000)和V(1000)**:
   - $ V(2000) $ = $ 2000^{0.88} $
   - $ V(1000) $ = $ 1000^{0.88} $
3. **计算方案A的预期感知价值**:
   - 预期感知价值 = 0.5 * $ w(0.5) $ * $ V(2000) $ + 0.5 * $ w(0.5) $ * $ V(1000) $
4. **计算方案B的预期感知价值**:
   - 预期感知价值 = 0.5 * $ w(0.5) $ * $ V(2000) $ + 0.5 * $ w(0.5) $ * $ V(0) $
通过这些计算,我们可以得到方案A和方案B的预期感知价值,从而判断在前景理论框架下,哪个方案更具有吸引力。具体的数值计算可以进一步展开,但由于参数和计算较为复杂,这里只提供一个框架和思路。
 

### 前景理论在Matlab中的实现 前景理论是一种描述决策者在风险条件下做出选择的行为模型[^1]。为了在Matlab中实现这一理论,通常涉及定义价值函数和权重函数来模拟个体对于收益和损失的不同敏感度。 #### 定义价值函数 价值函数用于表示不同结果的价值感知。一般形式如下: ```matlab function v = valueFunction(x, lambda) % Value function of prospect theory. alpha = 0.88; beta = 0.88; positive = (x >= 0).*((x.^alpha)); negative = (x < 0).*(-lambda * (-x).^beta); v = positive + negative; end ``` 此代码片段实现了基于参数`alpha`, `beta`以及损失厌恶系数`lambda`的价值计算方法。 #### 权重函数的构建 权重函数反映了人们对概率的感觉扭曲,在Matlab里可以这样表达: ```matlab function w = weightingFunction(p) % Weighting function of prospect theory. gamma = 0.61; delta = 0.69; w = p .^gamma ./ ((p .^gamma + (1-p).^delta).^(1/gamma)); end ``` 这里采用了幂律公式作为基础,其中`gamma`控制着低概率事件的重要性放大程度;而`delta`则影响高概率情况下的反应强度。 #### 计算预期效用 有了上述两个核心组件之后,就可以进一步编写程序去评估某个特定选项所带来的期望效用了: ```matlab function eu = expectedUtility(outcomes, probabilities, lambda) values = arrayfun(@(o) valueFunction(o, lambda), outcomes); weights = arrayfun(@weightingFunction, probabilities); eu = sum(values .* weights); end ``` 这段脚本接受一系列的结果及其对应的出现几率,并返回加权后的总得分——即所谓的“预期效用”。 通过这些基本模块,可以在Matlab环境中搭建起完整的前景理论框架,进而支持更复杂的应用场景分析工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MC数据局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值