实变函数从头学--1

文章介绍了数学中的集合论概念,如可数集、基数理论,以及度量空间的基础知识,包括欧氏空间、距离、极限点、开集与闭集的定义和性质。特别讨论了紧集、自密集、完备集的概念,并提到了康托尔三分集和稠密性等重要理论。
摘要由CSDN通过智能技术生成

第一章

基数

我们把有限集和可列集统称为可数集或至多可列集,可列集也称为可数无限集。

定理1.8 设A是无限集且基数为a,若B是至多可列集,则A\cupB的基数仍为a。

定理1.9 集合A是无限集的充要条件是A与某真子集对等。

定理1.10 [0,1]={x:0\leqslantx\leqslant1}不是可数集。

我们称(0,1]的基数为连续基数,记为c,实数集的基数为c。

定理1.11 设有集合列{A_{k}},,若A_{k}每个的基数都是连续基数则其并集\bigcup_{k=1}^{\infty }A_{k}的基数也是连续基数。

定理1.12 若A是非空集合,则A与其幂集\rho(A)不对等。集合A的基数小于其幂集\rho(A)的基数。

\mathbb{R}{_{}}^{n}中的距离·极限点

\mathbb{R}{_{}}^{n}:x={\xi _{1}\xi _{2},...\xi _{n}}的全体,是实数域上的n维向量空间。称\mathbb{R}{_{}}^{n}为n维欧氏空间。

定义1.17 设x={\xi _{1}\xi _{2},...\xi _{n}}\in\mathbb{R}{_{}}^{n},令\left | x \right |=(\xi_{1}^{2}+\xi_{2}^{2}+...+\xi_{n}^{2}^{\frac{1}{2}},称\left | x \right |为x的模或长度。

d(x,y)=|x-y|为距离

定义1.22 设E\subset\mathbb{R}{_{}}^{n},x\in\mathbb{R}{_{}}^{n},若存在E中的互异点列\left \{ x_{_{k}} \right \},使得\lim_{k\rightarrow \infty }\left | x_{k}-x \right |=0,则称为E的极限点,E的极限点全体记为E^{​{}'},成为E的导集。

定理1.15 \left ( E_{1} \cup E_{2}\right ){}'=E_{1}{}'\cup E_{2}{}'

定理1.16 \mathbb{R}{_{}}^{n}中任一有界无限点集E至少有一个极限点。

内点、外点、(边)界点、聚点、孤立点

开核E^{\circ}(全体内点组成的集合)、导集(全体聚点组成的集合)、边界(全体界点组成的集合)

开集、闭集

定理 对于任何E,开核是开集,导集和闭包是闭集

定理 任意多个开集之并仍是开集,有限多个开集之交仍是开集。

定理 任意多个闭集之交仍是闭集,有限多个闭集之并仍是闭集。

海涅-弗雷尔有限覆盖定理https://baike.baidu.com/item/有限覆盖定理/7821484?fr=aladdin

紧集:设M是度量空间X中一个集合,\chi是X中任一族覆盖了M的开集,如果此刻从\chi中选出有限个开集仍然覆盖M,则称M为X的紧集。

定理 设M是中的紧集,则M是中的有界闭集。

自密集:当集合中的每个点都是这个集的聚点时(没有孤立点)称为自密集

完备集(完全集):没有孤立点的闭集

构成区间:设G为直线上的开集,如果开区间(a,b)在G内,且端点不在G内,则称这个区间为G的构成区间

开集构造定理:直线上任一个非空开集可以表示成有限个或可数个互不相交的构成区间的和集

康托尔三分集

稠密

疏朗集

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值