第二章 测度论
长度公理:1、非负性 2、有限可加性 3、正则性
勒贝格测度公理:1、非负性 2、可列可加性 3、正则性
外测度
定义:设E时中的任意点集,对于每一列覆盖E的开区间,作出它的体积总和
(
可以等于,不同的区间列一般有不同的
),所有这一切
的组成一个下方有界的数集,它的下确界称为E的勒贝格外测度,简称L外测度或外测度,记为
,
。
外测度三条性质:
1、,当E为空集是,为0.
2、单调性 设,则
3、次可数可加性
任何集合都有外测度,外测度只具有次可数可加性,不具有可数可加性
可测集
定义:设E为中的点集,如果对任一点集T都有
,
则称E是L可测的,这时E的L外测度即称为E的L测度,记为mL。
可测集类
定理 1、凡外测度为零的集合皆为可测集,称为零测度集
2、零测度集的任何子集仍为零测度集
3、有限个或可数个零测度集之和仍为零测度集
定理 区间I(不论开,闭或半开半闭区间)都是可测集合,且mI=|I|
定理 凡开集、闭集都是可测的
代数 (定义)