实变函数从头学--2

本文介绍了测度论的基本概念,包括长度公理的三个性质和勒贝格测度的定义与特性。外测度被定义为开区间覆盖的下确界,具有非负性、单调性和次可数可加性。可测集是满足特定条件的点集,零测度集的性质也得到了讨论,强调了开集和闭集的可测性。
摘要由CSDN通过智能技术生成

第二章 测度论

长度公理:1、非负性 2、有限可加性 3、正则性

勒贝格测度公理:1、非负性 2、可列可加性 3、正则性

外测度

定义:设E时中的任意点集,对于每一列覆盖E的开区间\bigcup_{I=1}^{\infty }I_{i}\supset E,作出它的体积总和\mu =\sum_{I=1}^{\infty }\left | I_{i} \right |\mu可以等于,不同的区间列一般有不同的\mu),所有这一切\mu的组成一个下方有界的数集,它的下确界称为E的勒贝格外测度,简称L外测度或外测度,记为m^{*}E

inf_{E\subset \bigcup_{i=1}^{\infty }}\sum_{I=1}^{\infty }\left | I _{i}\right |

外测度三条性质:

1、m^{*}E\geqslant 0,当E为空集是,为0.

2、单调性 设A\subset B,则m^{*}A \subseteq m^{*}B

3、次可数可加性

任何集合都有外测度,外测度只具有次可数可加性,不具有可数可加性

可测集

定义:设E为R^{n}中的点集,如果对任一点集T都有

m^{*}T=m^{*}\left ( T\cap E \right )+m^{*}\left ( T\cap E^{c} \right )

则称E是L可测的,这时E的L外测度即称为E的L测度,记为mL。

 

可测集类

定理 1、凡外测度为零的集合皆为可测集,称为零测度集

         2、零测度集的任何子集仍为零测度集

         3、有限个或可数个零测度集之和仍为零测度集

定理 区间I(不论开,闭或半开半闭区间)都是可测集合,且mI=|I|

定理 凡开集、闭集都是可测的

\sigma代数 (定义)

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值