贝叶斯网络预测
用于贝叶斯分类器的数据集
• 类标记c:playtennis=yes,playtennis=no,
• 需计算P(yes),P(no)
• 还需计算P(strong|yes),P(strong|no),P(high|yes),P(high|no),P(cool|yes),P(cool|no),P(sunny|yes),P(sunny|no)
求c(x)
P(yes)* P(strong|yes)*P(high|yes)P(cool|yes) P(sunny|yes)=?
P(no)* P(strong|no)*P(high|no)P(cool|no) P(sunny|no)=?
选择较大值对应的类标记赋给c(x)
• P(yes)=9/14=0.64 P(no)=5/14=0.36
• P(strong|yes)=3/9 P(strong|no)=3/5
• P(high|yes)=3/9, P(high|no)=4/5
• P(cool|yes)=3/9, P(cool|no)=1/5
• P(sunny|yes)=2/9, P(sunny|no)=3/5
• P(yes)* P(strong|yes)*P(high|yes)*P(cool|yes)* P(sunny|yes)=0.0159
• P(no)* P(strong|no)*P(high|no)*P(cool|no)* P(sunny|no)=0.0206
所以预测结果为 no
归一化处理
- 即用待测样本属于yes的概率和待测样本属于no的概率分别处以他们的和
- 待测样本属于yes的概率 0.0053/(0.0053+0.0206)=0.2046
待测样本属于yes的概率 0.0053/(0.0053+0.0206)=0.2046 - 待测样本属于no的概率0.0206/(0.0053+0.0206)=0.7954