贝叶斯网络预测

贝叶斯网络预测

用于贝叶斯分类器的数据集

image-20221011232309597

image-20221011233201208

• 类标记c:playtennis=yes,playtennis=no,

• 需计算P(yes),P(no)

• 还需计算P(strong|yes),P(strong|no),P(high|yes),P(high|no),P(cool|yes),P(cool|no),P(sunny|yes),P(sunny|no)

求c(x)

P(yes)* P(strong|yes)*P(high|yes)P(cool|yes) P(sunny|yes)=?

P(no)* P(strong|no)*P(high|no)P(cool|no) P(sunny|no)=?

选择较大值对应的类标记赋给c(x)

image-20221011235958634

• P(yes)=9/14=0.64 P(no)=5/14=0.36

• P(strong|yes)=3/9 P(strong|no)=3/5

• P(high|yes)=3/9, P(high|no)=4/5

• P(cool|yes)=3/9, P(cool|no)=1/5

• P(sunny|yes)=2/9, P(sunny|no)=3/5

• P(yes)* P(strong|yes)*P(high|yes)*P(cool|yes)* P(sunny|yes)=0.0159

• P(no)* P(strong|no)*P(high|no)*P(cool|no)* P(sunny|no)=0.0206

image-20221012000016343

所以预测结果为 no

归一化处理

  • 即用待测样本属于yes的概率和待测样本属于no的概率分别处以他们的和
  • 待测样本属于yes的概率 0.0053/(0.0053+0.0206)=0.2046
    待测样本属于yes的概率 0.0053/(0.0053+0.0206)=0.2046
  • 待测样本属于no的概率0.0206/(0.0053+0.0206)=0.7954
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

W_chuanqi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值