ALS计算CP分解

本文介绍了张量的CP分解,探讨了确定张量秩的挑战,并详细阐述了使用交替最小二乘法(ALS)计算CP分解的过程。ALS通过迭代求解每个因子矩阵,最终达到最小化与原始张量差异的目标。尽管ALS存在收敛性和初始值敏感性的问题,但仍是实践中常用的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tensor rank

众所周知,CP分解就是将一个张量分解为一系列秩一张量之和

那么在计算CP分解之前,首先我们会遇到的一个问题就是如何确定张量的秩?也就是应该选择多少个秩一张量来组成原始张量呢?

不幸的是,确定张量的秩是一个NP-hard问题,目前,已知的只能够确定一个张量秩的上界。

例如,对于一个一般的三维张量而言, χ ∈ R I × J × K \chi\in R^{I \times J \times K} χRI×J×K, 它的秩遵循如下约束:

在这里插入图片描述

对于更多的关于张量秩的讨论不在这篇文章中提及,因此,在下面计算CP分解时,假设是在给定张量秩的前提下。

ALS计算CP分解

计算CP分解最为简单且常见的一个方法就是交替最小二乘法ALS

首先,提起CP分解,大家可能想到的是一系列秩一张量之和的形式,也就是像这张最经典的图:
在这里插入图片描述
但是,在CP分解的计算过程中,大家必须掌握下面这种矩阵展开形式:

在这里插入图片描述
如果对于这种形式你还比较陌生,建议先去看一下这篇文章:
CP and Tucker 分解

ALS求解:

假设 χ ∈ R

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的红猪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值