(二十一)WaveletFCNN: A Deep Time Series Classification Model for Wind Turbine Blade Icing Detection

论文信息

  • 2019
  • Machine Learning
  • 作者单位:美国莱斯大学(QS前100)&清华大学&香港大学
  • 数据集Goldwind Inc数据集
    Goldwind是中国最大的风力发电机制造商,也是2018年全球第三大风力发电机制造商

论文下载地址:https://arxiv.org/pdf/1902.05625v1.pdf
论文代码地址:https://github.com/BinhangYuan/WaveletFCNN
原始FCNN的结果来自Github存储库:https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline

需要简单储备的知识

离散小波转换(DWT)
深度神经网络

谱特征在时间序列分类的特征工程中也起着重要的作用。频谱分析首先利用傅立叶变换或小波变换等数学工具将基于时间的信号转换到频域,得到基于频率的特征,从而得到信号的周期性和波动性信息。

离散小波变换
1、学习参考链接

(1)理解参考连接一,点击跳转
(2)理解参考链接二,点击跳转
(3)Haar小波变换:通过代码可以了解到文中的方法使用的是Haar小波变换,在理解代码的过程中需要掌握该变换方法。
(4)一维的Haar小波变换这篇博客用实例分析的特别容易理解!!!

2、引入离散小波的原因——提取细节特征

下图是将将离散信号作离散小波变换的过程
在这里插入图片描述

  • g[n]:low pass filter低通滤波器,可以将输入信号的高频滤掉而输出低频。
  • h[n]:high pass filter高通滤波器,滤掉低频而输出高频。

3、离散小波变换的意义:
对于许多信号,低频成分相当重要,它蕴含着信号的特征,而高频成分则给出信号的细节或差别。例如,人的话音如果去掉高频成分,听起来仍能知道所说的内容;如果去掉足够的低频成分,则听到的是一些没有意义的声音。所以这类信号,低频信息可以近似原来的信号,高频信息体现信号的细节。因此,原始信号可以通过两个相互滤波器产生两个信号(高和低)

概述

1、研究对象:风能数据(多变量时间序列数据集,Goldwind Inc)

2、目的:风电机组故障检测

3、方法:深度神经网络和小波变换有效地结合
(1)在训练阶段,提出了一种基于小波的全卷积神经网络(FCNN),用于时间序列的分类;
(2)在检测阶段,将滑动窗口和多数投票算法相结合,提供异常的实时监测。

4、结果
该系统已在Goldwind Inc的真实数据集上成功实现,该数据集在多变量时间序列数据集上训练分类器,并实现了对风电场信号异常情况的监测算法。

一、论文动机

风能作为化石燃料的替代能源非常重要,多风电场都位于结冰概率较高的地区,叶片结冰可能导致严重的问题,如测量误差、功率损耗、生产过剩、机械故障和电气故障,因此,为了避免此类问题,结冰检测成为一件重要的事情。

二、论文创新

1、为了设计一个更精确的分类器,本文对全卷积神经网络进行了改进,在输入特征上增加了正交离散小波变换系数,该系数表示序列在多个范围内的方差。
(1)原始信号的分解揭示了多分辨率之间的信息嵌入。与只保留光谱信息的离散傅里叶变换不同,离散小波变换同时保留了时域和频域信息。
(2)小波多分辨率分析可以为完全卷积神经网络提供有用的信息,因为原始卷积层只能在受滤波器尺寸约束的固定区域内学习信息。

2、另一方面,为了给增强的分类器,实时提供鲁棒预测,设计了一种滑动窗口和多数投票相结合的异常监测算法,使得分类器不可避免的误差和不稳定限制最小化

三、论文贡献

(1)将卷积神经网络与小波多分辨率分析相结合,作为一种改进的序列分类模型。
(2)在单变量时间序列分类的UCR数据集上实现更高的精度。
(3)设计一种新的异常监测算法,以提供准确和稳健的实时结冰检测。
(4)通过在风电场的实际信号中采用异常监测算法,在检测风轮机中的冻结叶片方面获得有希望的结果。

四、论文方法

(一)增强全卷积神经网络

1、相关的引入工作

(1)给定长度N的信号序列
在这里插入图片描述
(2)对于给定的信号序列会将其在两个基函数 φ 和 ψ 上进行投影得到的两个结果,分别被称为近似系数,细节系数。

在这里插入图片描述
(i)在后续文章中只有细节系数起作用;近似表示信号的低尺度,即低频信息;细节表示信号的高尺度,即高频信息。
(ii)细节系数揭示了信号在不同尺度上的方差,近似系数则得到该尺度上的平滑平均值。
(iii)离散小波变换的一个重要特性是每个层次上的细节系数是正交的,也就是说,对于不在同一水平上的任何一对细节系数,内积为0
在这里插入图片描述
(3)没有将逼近系数放入神经网络,原因有二:

(i)逼近系数表示输入信号的一些平滑平均值,在处理原始信号时,卷积层应该很容易学习这些知识;
(ii)与细节系数不同,逼近系数之间不存在正交关系,输入的冗余会扩大神经网络的参数空间,给模型训练和推理设置障碍。

2、方法概述

1、首先,根据著名的金字塔算法计算输入信号的离散小波系数到一个特定的水平,这可以看作是小波变换的一个超参数;
2、然后,将原始信号和每个层次的细节系数分别放入分离的子卷积神经网络中,从小波谱中提取不同尺度的知识
3、最后,将每个子网络的全局池输出串联起来,生成最终的分类结果。

3、相关模型及方法

在这里插入图片描述

该结构有效地结合了谱特征和全卷积神经网络,提高了分类器的分类精度。从以下几个方面了解该结构:

(1)输入

(1)模型的输入是N×D的时间序列样本,其中N是信号的长度,D是信号的维数。对于单变量序列,D是1。
(2)通过金字塔算法从输入信号计算细节系数,直到达到指定为超参数的目标水平L。每个小波系数层的大小是在这里插入图片描述

(2) Conv1D
卷积层是神经网络的基本组成部分,它将计算与输入中的局部区域相连的神经元的输出,每个神经元都计算其权重与其在输入体积中所连接的小区域之间的点积。

(3)BN和ReLu
Batch normalization layer[21]作为dropout的一种替代方法,将减少隐藏单元值的移动量,并充当正则化器以防止过度拟合。Relu层[37]将应用一个按元素划分的激活函数,阈值激活为零。

(4)全局平均池( Global Average Pooling)
在每个子网的末尾,应用全局平均池层[56],通过计算每个卷积信道内的平均值来降低时间维度。与全连通层相比,全局平均池层可以通过减少模型中的参数总数来最小化过度拟合。

(5)连接层
将每个子神经网络的结果合并到一个张量中。

(6)Softmax
Softmax层是多类分类应用中应用最广泛的激活函数,其中Softmax函数用于计算类别概率分布,说明任何类是真的概率。

(二)异常监测算法

为了实时生成准确、鲁棒的异常检测,提出了一种基于滑动窗口多数投票的异常检测算法。

1、基于滑动窗口

(1)首先定义了两个变量:窗口大小Lw和步长Ls,其中Ls≪Lw;
(2)假设时间序列被划分成长度为Ls的块,该算法允许长度为Lw的活动窗口沿输入时间序列移动一个Ls大小的步长。
(3)训练后的分类器将为活动窗口内的序列提供预测。每次活动窗口移动时,都会进行预测,以便除最后一个活动窗口中的第一个块之外的所有块都将得到新的预测。

2、多数投票

这样,当滑动窗口沿信号移动时,每个块将累积Lw/Ls。因此,可以使用多数票来确定当前块是否异常,通过设置阈值τ,多数票可以更加灵活,如果正预测的比率大于或等于负预测比率,将生成正预测,否则生成负预测。

3、一个在线异常监测算法的例子

例子:多数投票来判断绿色块是否异常
在这里插入图片描述 (i)假设信号沿时间轴首先被分割成块,为了简单起见,每个块的长度为1,滑动窗口的大小为4;
(ii)我们关注绿色块,当滑动窗口(由黑色框架表示)第一次覆盖绿色块时,分类器将生成预测p1;
(iii)在接下来的三个步骤中,当窗口沿着信号移动时,分类器将依次生成预测p2、p3和p4;
(iiii)最后,将使用基于p1、p2、p3和p4的多数投票来决定绿色块是否异常。

(三)实验评估
  • 对于实验我的感受:

1、对于刚开始读论文的时候,总是一味注意理解文章的思想,和模型,其实时间稍微一长,容易忘记论文在讲什么,甚至忘记地彻头彻尾,因为前期知道大概怎么个阅读论文,也比较快的能够理解作者模型,这两个礼拜读论文的过程中,我花了较多的时间在实验上面,作者是如何展开他的实验,如何通过对比实验来证明,对照代码去理解,发现能够更通透地消化这篇论文,也能够在脑袋里更高质量地储存更长时间,所以,对于发在好的期刊或者会议上或是好的团队写出来的文章,更应该带着对文章对模型的理解多去琢磨他们的实验
2、对于实验,目前比较关注
(1)数据集
a、数据集单维?多维?
b、代码中是如何处理数据的?
(2)对比实验
a、对比的目的?是为了证明什么?证明几个方面?
b、与其对比的方法是否常见?
(后面继续补充)

  • 实验评估目的回答以下两个问题:

(1)离散小波系数和卷积神经网络结构的相应变化是否普遍提高了分类器的精度?
(2)配备改进分类器的异常监测算法对风电场的真实信号进行冻结叶片异常检测的准确性和可靠性如何?

  • 两组实验来验证

(1)在第一个实验中,将小波CNN作为URC时间序列存档的基准,以说明对原始FCNN的改进。
(2)在第二个实验中,首先对标记的多变量信号进行小波CNN训练,然后对风电场的真实信号进行异常监测算法测试。

实验首先用的单维的时间序列UCR数据集
然后使用多维的时间序列Goldwind Inc数据集上

1、单变量时间序列分类(对象UCR数据集)

(1)比较了小波神经网络与现有技术的测试误差
在这里插入图片描述

**(2)比较小波CNN和原始FCNN **

简言之,在85个数据集中的64个数据集中,小波CNN获得了更好或等效的精度
在这里插入图片描述

2、叶片结冰检测(Goldwind Inc数据集)
  • 关于数据集

原始数据从监控和数据采集(SCADA)系统收集,该系统包括数百个维度。
根据工程师的领域知识,保留了28个与冻结叶片相关的连续变量作为输入多元信号

  • 异常检测框架包括两个部分,离线学习阶段和在线检测阶段

1、在学习过程中,将原始信号分成一组固定长度的片段,每个片段都有一个二进制标签,指示叶片在这段时间内是否冻结,这个集合被进一步分割成训练集和验证集,用于学习小波CNN分类器。
2、在线检测阶段,使用我们的异常监测算法和小波CNN分类器对叶片结冰情况进行准确和鲁棒的检测

  • 数据集从单维到多维的变换

小波CNN从单变量序列到多元序列的变化是直接的,只需对每个信号维独立地进行离散小波变换来构造输入层,并在每个子模块中将第一个卷积层的输入维数改为26,而模型的其余部分则保持不变。

(1)仿真信号的小波变换CNN和FCNN分类性能指标
在这里插入图片描述

(2)阈值τ与评估测量之间的关系

当阈值τ=0.4时,F1得分达到最大值
在这里插入图片描述

在自己的电脑上复现了这篇论文的代码。

  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是肉球哇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值