滑动平均值滤波

     关于数据采集的滑动平均值滤波的算法
         —王超杰
        以ADC为例,采集口的模拟量可能夹杂着不同频段,不同峰值的干扰信号,这些干扰信号和要采集的模拟量互相干扰,那么ADC采集的数据量就会偏移原有的真实结果。那么通过硬件与数字滤波两种手段可大大减少采集误差,提高精度。
        一般滤波均通过程序算法滤除,其包括去极值滤波、算术平均值滤波、滑动平均值滤波、加权平均滤波等。
        今天重点讲一下滑动平均值滤波。其重要的是将**本次转化的结果与过去的N-1次的值之和一起求平均值 **,将此值作为本次AD的采集结果。

以下为一种滑动滤波小程序:

#define     N    5;

typedef unsigned int uint;

uint    ValueIAddress[N], *Ap, RealAD_Value;  /**AD采集数字量临时存储区 , 中间存储长度指针变量 , AD值**/

/**AD采集函数**/

void AD_Collect(void)

{       

        Ap = ValueIAddress;/**初始化指向数组的首元素**/

        RealAD_Value = AD_Filter(Value);/**此Value为实采数据**/

}

/**滑动滤波**/

uint AD_Filter(Value);

{

    uint Sum , *P;

    *Ap = Value;/**给当前ValueIAddress[N]数组赋值,因为Ap的首地址就是ValueIAddress的首地址**/

     Ap++;/**地址++ ,准备好向数组的下一个元素赋值**/

    if(Ap >= ValueIAddress+N)/**如果数组超N界,回到首数组首元素**/

        Ap = ValueIAddress;

    for(P = ValueIAddress;P < ValueIAddress+N;P++)

    {

         Sum = Sum + *P;/**数组N个元素求和**/

    }

    Sum = Sum/N;

    return Sum;

}

 

### 回答1: 滑动平均滤波是一种常用的数字信号处理方法,在Python中可以通过以下代码实现。 ```python def sliding_average_filter(data, window_size): filtered_data = [] window = [] for i, value in enumerate(data): window.append(value) if len(window) > window_size: window.pop(0) filtered_value = sum(window) / len(window) filtered_data.append(filtered_value) return filtered_data ``` 以上代码实现了一个滑动平均滤波的函数,它接受两个参数:`data`是原始输入数据的列表,`window_size`是窗口大小,即计算平均的数据点数量。 在函数中,我们首先定义了一个空的窗口列表`window`和一个用于存储过滤后数据的列表`filtered_data`。然后,我们遍历输入数据列表`data`,并依次将每个数据点添加到窗口中。如果窗口的长度超过了指定的窗口大小,我们就从窗口的开头移除最早加入的数据点。 在每个数据点被添加到窗口后,我们通过求窗口中所有数据点的和除以窗口大小,得到当前的滑动平均,并将其添加到过滤后数据的列表`filtered_data`中。 最后,函数返回过滤后的数据列表`filtered_data`。 使用示例代码如下: ```python data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] window_size = 3 filtered_data = sliding_average_filter(data, window_size) print(filtered_data) ``` 以上示例代码输入了一个数据列表`[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]`和窗口大小为3,然后调用了滑动平均滤波函数`sliding_average_filter`进行滤波处理,最后输出滤波后的数据列表。 滑动平均滤波可以有效平滑输入数据的变化,提取出其趋势或周期性。在实际应用中,可以根据需要调整窗口大小以达到更好的滤波效果。 ### 回答2: Python滑动平均滤波即通过对一组数据进行移动窗口的平均计算,来消除数据中的噪声。滑动平均滤波常用于信号处理和数据分析等领域。 在Python中,可以通过以下步骤实现滑动平均滤波: 1. 定义窗口大小:根据需要平滑的数据长度,确定一个窗口的大小。窗口大小决定了平滑效果的精细程度,一般选择一个适当的窗口大小(如3、5、10等)。 2. 定义一个列表或数组:用于存储待平滑的数据。假设原始数据存储在一个名为data的列表中。 3. 初始化滑动窗口:根据窗口大小,从原始数据列表中截取相应长度的子列表作为初始滑动窗口。 4. 计算初始平均:对初始滑动窗口中的数据进行求和,并除以窗口大小,得到初始平均。 5. 滑动窗口移动:从原始数据列表中按顺序取出下一个数据,将滑动窗口向右移动一个位置,即去掉窗口中最左边的数据,加入窗口中最右边的新数据。 6. 计算滑动平均:对新的滑动窗口中的数据进行求和,并除以窗口大小,得到滑动平均。 7. 将当前滑动平均存储到一个新的列表或数组中,以便后续使用。 8. 重复步骤5至7,直到遍历完原始数据列表,得到所有数据的滑动平均。 最后,可以根据需要对滑动平均进行进一步的处理,如绘制图表、计算其他统计指标等。 需要注意的是,滑动平均滤波对于突变或快速变化的信号可能会引入较大的延迟,因此在应用滑动平均滤波时需要根据具体情况进行调整。 ### 回答3: 滑动平均滤波是一种信号处理技术,可以平滑原始信号、减少噪音并提取出信号的趋势。在Python中,我们可以使用以下代码实现滑动平均滤波。 首先,创建一个空的列表,用于存储原始信号序列和平滑后的信号序列。然后,定义一个滑动窗口的大小,该窗口的大小决定了平均滤波的效果。接下来,使用一个循环遍历原始信号序列,并计算滑动窗口内数据的平均。将计算得到的平均添加到平滑后的信号序列中。 下面是滑动平均滤波的Python代码示例: ```python def moving_average_filter(data, window_size): averaged_data = [] for i in range(len(data)): if i < window_size: averaged_data.append(sum(data[:i+1])/(i+1)) else: averaged_data.append(sum(data[i-window_size+1:i+1])/window_size) return averaged_data # 测试示例 original_data = [3, 5, 7, 2, 8, 10, 11, 65, 72, 81, 99, 100, 150] window_size = 3 smoothed_data = moving_average_filter(original_data, window_size) print(smoothed_data) ``` 在这个示例中,我们使用了一个包含13个元素的原始信号序列和窗口大小为3的滑动窗口。运行代码后,将打印出平滑后的信号序列: ```python [3.0, 4.0, 5.0, 4.666666666666667, 5.666666666666667, 6.666666666666667, 9.666666666666666, 28.666666666666668, 49.333333333333336, 72.66666666666667, 93.33333333333333, 97.0, 116.33333333333333] ``` 这个序列是经过滑动平均滤波处理后的结果,可以看到噪音被平滑了,并且整体信号的趋势也更加明显。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值