关注微♥公众号:“电击小子程高兴的MATLAB小屋”获取专属优惠
一.滑动平均滤波算法
算数平均滤波需要多次采样后才能得出一个有效值,如果被检测量变化较快,多次采样后才输出一次有效值,表现就是系统反应迟钝。将当前采样值与之前连续的历史采样值进行平均,这样每次采样结束即可得出有效值。因为参与计算的历史值个数固定且内容不断前移覆盖更新,类似滑动的数据块窗口,因此成为滑动平均滤波算法。
假如采样6次,每次使用最近5个历史值与当前最新值求算数平均值,输出一个有效值;下次采样时再覆盖最早时间的点做同样操作。类似环形数组,求最近6个值的平均值。
滑动平均滤波,输出的结果与先前历史记录有关,假如故意突然改变物理量,需要几个采样周期,输出结果才逐渐接近真实值,实际一般情况下,越新的数据权重越大,历史记录权重应该减少,对滑动窗口中的数据分配不同的加权系数,进行加权平均值。
二.五点三次平滑算法
五点三次平滑算法是一种用于数据平滑处理的技术,常用于对数据序列进行平滑或降噪,特别是用于消除时间序列或实验数据中的随机波动。在该算法中,每个数据点用其附近的5个数据点的加权平均值来代替,以获得平滑效果。
公式
五点三次平滑算法可以表示为: