高等几何——射影平面3

博客涉及三维重建相关信息,但具体内容未给出。三维重建在信息技术领域有重要应用,可用于多个场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >





高等几何 出版时间:2012年版 内容简介   《21世纪高等院校数学基础课系列教材:高等几何》是按照高等院校《高等几何教学大纲》的要求,同时结合作者多年来开设高等几何课程的教学实践,以及对高等几何面向21世纪的课程体系和教学内容的深入研究编写而成的。全书共分五章:前四章是根据克莱因的变换群观点,以射影变换为基本线索,介绍一维和二维射影几何的基本内容和射影观点下的仿射几何与欧氏几何理论,其中重点讨论二次曲线的射影、仿射和度量理论,以明确各几何学的关系,使读者可以从较高的观点认识初等几何;第五章为选学内容,介绍平面射影几何基础和非欧几何的初步知识。《21世纪高等院校数学基础课系列教材:高等几何》每节配有适量的习题,每章还配有总习题,书末附有习题答案与提示,以便于教师教学与学生自学。为了激发学生学习射影几何的兴趣,书末添加了一个附录,简要介绍射影几何的发展史。《21世纪高等院校数学基础课系列教材:高等几何》可作为高等院校数学专业高等几何课程的教材,还可供中学几何教师作为教学参考书。 目录 第一章 射影平面 §1.1 无穷远(理想)元素 一、射影几何 二、中心投影 三、无穷远(理想)元素 习题1.1 §1.2 齐次坐标 一、齐次坐标的引进 二、射影平面的定义 三、有序三实数组的运算 四、射影平面上的直线及点线结合关系 习题1.2 §1.3 对偶原理与Desargues透视定理 一、平面图形 二、Desargues透视定理 三、对偶原理 习题1.3 §1.4 射影坐标与射影坐标变换 一、一维射影坐标与坐标变换 二、二维射影坐标与坐标变换 习题1.4 习题一 第二章 射影变换 §2.1 射影变换 一、变换的概念 二、一维射影映射 三、二维射影映射 习题2.1 §2.2 交比 一、交比的概念 二、配景定理 三、交比的性质 四、交比与一维射影坐标 五、交比与射影映射 六、用交比解释的几个概念 习题2.2 §2.3 透视映射 一、透视映射的定义 二、构成透视映射的条件 三、透视映射与射影映射 四、Pappus定理 五、完全四点形与完全四线形 六、直线(线束)上的射影变换 习题2.3 §2.4 对合变换 一、对合的定义 二、对合变换的确定 三、对合变换与射影变换 四、对合变换的类型 五、Desargues对合定理 习题2.4 §2.5 直射变换 一、二重元素 二、透射变换 三、调和透射变换 四、合射变换 五、各种特殊直射变换的表达式 六、射影变换与初等几何变换 习题2.5 习题二 第三章 配极变换与二次曲线 §3.1 配极变换 一、对射变换 二、配极变换的概念 三、共轭点与共轭直线 四、由配极变换导出的一维对合变换 五、自配极三点形 六、配极变换的类型 习题3.1 §3.2 二次曲线 一、二次曲线的概念 二、极点与极线 三、二次曲线方程的另一简化形式 四、Steiner定理 习题3.2 §3.3 Pascal定理与Brianchon定理 一、Pascal定理 二、Brianchon定理 习题3.3 §3.4 二次曲线上的射影变换与二次曲线的射影分类 一、二次曲线上的射影变换 二、二次曲线上的对合变换 三、一次点列与二次点列的透视对应 四、二次曲线的射影分类 习题3.4 习题三 第四章 射影观点下的仿射几何与欧氏几何 §4.1 仿射变换与仿射几何 一、仿射平面 二、平面仿射坐标系 三、仿射比 四、仿射变换 习题4.1 §4.2 二次曲线的仿射理论 一、二次曲线的仿射性质 二、二次曲线的仿射分类与标准方程 习题4.2 §4.3 运动变换与欧氏几何 一、虚元素的引进 二、运动变换 三、笛卡儿直角坐标系 四、拉格儿公式 习题4.3 §4.4 二次曲线的度量理论 一、圆的一些性质 二、二次曲线的主轴和顶点 三、二次曲线的焦点和准线 四、解析几何中的应用举例 习题4.4 §4.5 变换群与几何学 一、克莱因的变换群观点 二、三种几何学的比较 习题4.5 …… 第五章 平面射影几何基础与非欧几何概要 附录 射影几何发展简史 参考文献 名词索引 习题答案与提示
高等几何 作者: 钟集/唐素兰/叶木秀编 出版社: 武汉大学出版社 出版年: 2005-2 页数: 322 定价: 16.00元 装帧: 简裝本 丛书: 面向21世纪本科生教材 ISBN: 9787307044289 内容简介 · · · · · · 本书可用做高等院校本科数学专业的高等几何课程的教材。本书的宗旨是简要地介绍射影几何的基本知识、基本理论和方法,希望帮助读者发展几何空间概念,了解克莱因(Klein)的变换群观点,明确射影几何与仿射几何、欧氏几何的内在联系和根本差别,提高解决几何问题的能力,为进一步学习现代数学打好基础。此外,本书还简单地介绍了n维射影空间以及不同基域(如实数域、复数域和有限域)上的射影空间的初步知识,使读者进一步了解抽象空间的概念,并作为桥梁以便于读者接触现代数学知识。 本书以克莱因的变换群观点贯穿始终,内容着重论述各种变换,包括1维射影变换,透视变换和对合,直射变换,对射变换,配极变换等,并且分别建立了射影变换群、仿射变换群、相似变换群和正交变换群。每种群对应于一种几何,并通过变换群的关系揭示出所对应的几何的关系。在论述变换的过程中,结合介绍一些在射影几何中居重要位置的内容。 坐标法是本书使用的主要方法。本书中依次建立了1维射影坐标系、2维射影坐标系、3射影坐标系和坐标变换,主要使用齐次坐标。对于仿射几何和欧氏几何,则改用非齐次坐标。 本书不采用公理法基础,开头介绍几条公理,目的在于揭示射影平面的基本特征,同时也为证明一些定理作根据。除了开头引入无穷元素以及射影坐标系以外,全书的论述在逻辑上是严格的。 交比是基本的射影不变量,在射影几何中有重要地位,因而本书作了较详细的介绍。 2阶曲线可以有不同的定义。本书用配极变换作出定义,主要是突出配极变换的作用。对于2阶曲线的各种特性,本书所选择的内容不多,较重要的列为定理,一般的作为例题和习题。 本书所使用的方法以代数法为主,因此,各种向量运算的运用,各种变换的关系式都是基本的知识,必须加以掌握。在这个基础上,也就比较容易解题、证题。因为综合法有其方便、巧妙的特点,所以有些定理的证明,两法兼用,供读者参考。实际解题时,只有一种方法就够了。 读者学习高等几何,在按章节理解各项内容以外,还要注意整体理论,每部分理论包括主要概念、主要定理、主要方法、系统结构等。这样才能够对高等几何有较深入的理解,而且有利于掌握和记忆。 本书的便题都是为帮助读者理解、掌握理论和方法而选用的,其中有些题目较为复杂。不过,有了详细的解法介绍,读者不难看懂。至于习题,避免选用难题。习题附有解答或提示,便于读者参考。 丛书信息   面向21世纪本科生教材 (共7册), 这套丛书还有 《线性空间引论》,《空间解析几何》,《线性规划》,《泛函分析基础》,《离散数学》 等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值