深度强化学习:(五)Actor Critic

一、Stochastic Actor-Critic

前言

  1. some glaring issues with vanilla policy gradients(REINFORCE): noisy gradients and high variance.These issues contribute to the instability and slow convergence.

  2. 蒙特卡洛这种传统强化学习方法等到情景episode结束才更新参数, 时序差分(TD)学习每个时间步都进行参数更新.

  3. Improving policy gradients: Reducing variance with a baseline

       

1.Actor-Critic( Q-AC, use Q value )

   1)deriving Actor-Critic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值