数学一知识点积累

指记录本人不熟悉的知识点。(会不时更新,并将自己不熟练的部分置顶,不分大学科,只分小知识点)
在这里插入图片描述

在看到“光明”的同时,更要准备困难,更要有底线思维。

高数

(1~4周)

函数 极限 连续

函数是微积分的研究对象。确定函数有两个法则,定义域和对应法则。
有界函数,值域在一个有限的范围内。

奇函数 f(0)=0
奇函数积分为偶函数,偶函数积分为奇函数,
奇函数求导为偶函数,偶函数求导是奇函数

导数 微分 中值定理

一般,由极坐标表示的曲线,可把θ视作参数,写出曲线的参数方程,再利用参数方程求导公式即可得出函数的导数。

不定积分 定积分
向量代数与空间解析几何
多元微分

dz = ∂ z ∂ x \frac{∂z}{∂x} xzdx+ ∂ z ∂ y \frac{∂z}{∂y} yzdy

线性代数
行列式 矩阵 向量 方程组

A是n阶矩阵 A* = (Aji )n*n(代数余子式)

  1. (AB) * = B *A *
  2. ( ( (   A T \ A^T  AT ) ∗ )^{*} ) = ( ( (   A ∗ \ A^{*}  A ) T )^T )T
  3. ( ( (   A − 1 \ A^{-1}  A1 ) ∗ )^* ) = ( ( (   A ∗ \ A^*  A ) − 1 )^{-1} )1
  4. AA* = A*A = |A|E
  5. 当|A| !=0 时, A ∗ A ∗ ∣ A ∣ A*\frac{A^*}{|A|} AAA = A ∗ ∣ A ∣ \frac{A^*}{|A|} AAA = E,则 A − 1 A^{-1} A1 = A ∗ A ∗ ∣ A ∣ A*\frac{A^*}{|A|} AAA
    另一方面, A ∣ A ∣ \frac{A}{|A|} AA
    A ∗ A^* A = A ∗ A^* A * A ∣ A ∣ \frac{A}{|A|} AA = E,则 ( ( ( A ∗ A^* A ) − 1 )^{-1} 1 = A ∣ A ∣ \frac{A}{|A|} AA
    A的伴随矩阵=A的模*A的逆矩阵

r ( A ∗ ) = { n , r ( A ) = n n − 1 , r ( A ) = n − 1 0 = r ( A ) < n − 1 r(A^*)=\left\{ \begin{aligned} n & ,& r(A)=n \\ n-1 & , & r(A)=n-1 \\ 0 & = & r(A)<n-1 \end{aligned} \right. r(A)=nn10,,=r(A)=nr(A)=n1r(A)<n1
向量组等价的基本判定是:两个向量组可以互相线性表示。
矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。

方程组有解,系数矩阵秩=增广矩阵的秩
方程组无解,系数矩阵秩≠增广矩阵的秩

特征值和特征向量 二次型

1.设A为n阶矩阵,若
Aα = λα(α≠0),则称λ是A的特征值,α是A的属于λ的特征向量。
将上式变形(λE-A)· α = 0 (α≠0),即齐次线性方程组(λE-α)=0有非零解

2 求特征值与特征向量
方法一:
解方程|λE-A|=0 得特征值λ
解方程组(λE-A)α = 0 得特征向量α
方法二:利用定义Αα=λα

3.特征值的性质
设A为n阶矩阵,A的特征值为λ1,λ2,λ3…λn,则

  1. λ12+…+λn = ∑ i = 1 n \sum_ {i=1}^n i=1naii = tr(A), 称tr(A)= ∑ i = 1 n \sum_ {i=1}^n i=1naii为A的迹。
  2. λ1λ2…λn=|A|

4 特征向量的性质

  1. 不同特征值对应的特征向量是线性无关的
  2. 设A为n阶矩阵,λk为A的k重特征值(k>1),则属于λk的线性无关的特征向量个数不超过k个。
  3. 设A为n阶矩阵,Aα1 = λ1α1, Aα2 = λ2α2, λ1≠λ2,其中α1 ≠ 0,α2 ≠ 0,则α12 不是A的特征向量。

实对称矩阵的不同特征值对应的特征向量正交
A~B 意味着 迹相同(对角线元素相加之和)并且 行列式相同
A= α β T αβ^T αβT,(α, β)意思是tr(A) = A的迹

概率

B二项分布 binomial distribution X~B(n, p) n表示测验的次数,p表示一次非0的概率
P泊松分布 poisson’s distribution
U均匀分布 uniform distribution
E指数分布 exponential distribution
N正态分布 normal distribution X~N(u1,n1) 2 X 2X 2X~N(2u1, 2 2 2^2 22*n1) Y~ N(u2, n2) X+Y~N(u1+u2, n1+n2) X-Y ~N(u1-u2, n1+n2)
在这里插入图片描述

随机事件 随机变量 多维随机变量 数字特征

相互独立的条件下,联合概率密度为两个概率密度相乘,然后求二重积分。###
连续性随机变量的分布函数也是连续函数。

数学期望 E(x)= ∑ i = 1 ∞ \sum_{i=1}^{∞} i=1 xp(x) 数学期望反应平均值
在这里插入图片描述
泊松分布是离散型的。
在这里插入图片描述
指数分布 期望是参数的倒数
正态分布 期望是μ 也是对称轴
柯西分布没有期望
数学期望可能存在也可能不存在
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第三条,变量相减,则期望相减,简便复杂变量运算
第四条反过来不成立
在这里插入图片描述
在这里插入图片描述

方差

在这里插入图片描述
在这里插入图片描述
方差反映随机变量取值关于平均值的平均离散程度。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
泊松分布,期望和方差都是其参数λ
正态分布,方差是 σ 2 σ^2 σ2
在这里插入图片描述
在这里插入图片描述
二项分布的方差,利用性质3. np(1-p)
在这里插入图片描述
在这里插入图片描述

协方差 相关系数 矩
协方差和相关系数反映两个随机变量的关系
在这里插入图片描述

协方差有可能存在,也有可能不存在
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

相不相关,算协方差。
在这里插入图片描述

在这里插入图片描述

相关系数
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

相不相关只是,线性关系。 别的关系不知道,独立是啥关系都没有。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

大数定律 极限中心定理

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

频率依概率收敛于统计概率
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

中心极限定理
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

给了一个近似计算公式
在这里插入图片描述

在这里插入图片描述

数理统计 参数估计 假设检验
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值