LeetCode 155. 最小栈 C++

该博客介绍了如何设计一个支持push、pop、top操作,并能在常数时间内检索到最小元素的栈。通过维护两个栈,一个用于常规栈操作,另一个用于存储最小元素,确保getMin操作的时间复杂度为O(1)。提供的解题思路和代码展示了如何在C++中实现这个数据结构。

题目描述

设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。

push(x) —— 将元素 x 推入栈中。
pop() —— 删除栈顶的元素。
top() —— 获取栈顶元素。
getMin() —— 检索栈中的最小元素。
 

示例:

输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]

输出:
[null,null,null,null,-3,null,0,-2]

解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> 返回 -3.
minStack.pop();
minStack.top();      --> 返回 0.
minStack.getMin();   --> 返回 -2.
 

提示:

pop、top 和 getMin 操作总是在 非空栈 上调用。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/min-stack

解题思路

用两个栈来实现
第一个栈stk,用于正常的对栈的操作
第二个栈minStack,用于保证此栈的栈顶元素一直是最小元素
MinStack函数中:初始化minStack最小栈
push函数中:
stk栈正常放入
minStack栈要与当前栈顶元素(即当前最小元素)做对比,取更小的一个放入
pop函数:正常出栈。
top函数:正常返回栈顶元素
getMin函数:返回minStack中的栈顶元素,即最小元素

代码

class MinStack {
public:
    stack<int> stk; //正常栈
    stack<int> minStack;    //栈顶元素为最小元素的栈
    /** initialize your data structure here. */
    MinStack() {
        minStack.push(INT_MAX); //初始化最小栈
    }
    
    void push(int val) {
        stk.push(val);  //stk正常存入
        minStack.push(min(val,minStack.top())); //minStack需要保证栈顶元素始终最小,所以需要对比后再存入
    }
    
    void pop() {
        stk.pop();  //stk正常弹出
        minStack.pop(); //minStack需要同步弹出
    }
    
    int top() {
        return stk.top();//正常取栈顶元素
    }
    
    int getMin() {
        return minStack.top();//此处为最小元素
    }
};

/**
 * Your MinStack object will be instantiated and called as such:
 * MinStack* obj = new MinStack();
 * obj->push(val);
 * obj->pop();
 * int param_3 = obj->top();
 * int param_4 = obj->getMin();
 */

### 三级标题:C++ 实现最小的方法 最小是一种扩展的结构,能够在常数时间内返回当前中的最小值。在 C++ 中,实现最小通常有两种主流方法:使用辅助同步记录最小值,或者使用一个来同时存储元素及其当前最小值。 #### 方法一:使用两个实现(主最小) 在这种实现中,维护两个:一个用于存储原始数据(主 `s`),另一个用于同步存储当前最小值(最小 `mins`)。最小顶始终保存着主中当前最小值的状态。 ```cpp class MinStack { public: std::stack<int> s; std::stack<int> mins; MinStack() { mins.push(INT_MAX); // 初始化最小为最大值,确保第一个元素一定被记录为最小值 } void push(int val) { s.push(val); mins.push(std::min(mins.top(), val)); // 将当前最小值压入最小 } void pop() { s.pop(); mins.pop(); // 主最小同步弹出 } int top() { return s.top(); } int getMin() { return mins.top(); // 直接返回最小顶 } }; ``` 这种方法通过额外的空间换取了时间效率,每次 `push` 和 `pop` 操作都为 $O(1)$ 时间复杂度,且 `getMin` 同样是 $O(1)$ [^4]。 #### 方法二:一个中存储元素与最小值对 另一种实现方式是在一个中同时保存当前元素及其对应的最小值。通过 `pair<int, int>` 类型,将当前值与当前最小值一同压入中,从而避免使用第二个。 ```cpp class MinStack { public: std::stack<std::pair<int, int>> v; MinStack() {} void push(int val) { if (v.empty()) { v.push({val, val}); // 第一个元素,最小值就是它自己 } else { int currentMin = std::min(val, v.top().second); v.push({val, currentMin}); // 压入当前值和当前最小值 } } void pop() { v.pop(); } int top() { return v.top().first; // 返回当前顶元素 } int getMin() { return v.top().second; // 返回当前最小值 } }; ``` 这种方式只使用一个,但每个元素都携带了最小值信息,使得 `getMin` 的查询同样保持 $O(1)$ 时间复杂度 [^5]。 #### 时间与空间复杂度分析 - **时间复杂度**: - `push`、`pop`、`top` 和 `getMin` 操作均为 $O(1)$。 - **空间复杂度**: - 使用辅助或存储最小值的结构会带来 $O(n)$ 的额外空间消耗,其中 $n$ 是中元素的数量。 这两种实现方式都满足了最小的基本要求:在常数时间内获取最小值,并且支持标准的操作。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值