算法介绍
LSTM(Long Short-Term Memory)算法是一种特殊设计的循环神经网络(RNN, Recurrent Neural Network),专为有效地处理和建模序列数据中的长期依赖关系而开发。由于传统RNN在处理长序列时容易遇到梯度消失和梯度爆炸问题,导致模型难以捕捉到远距离输入之间的关联,LSTM通过引入独特的细胞状态(cell state)和多层门控机制解决了这些问题,从而在各种序列学习任务中展现出强大的性能。
LSTM模型的结构如下:
LSTM的关键组件如下:
遗忘门
LSTM(Long Short-Term Memory)网络的遗忘门(Forget Gate)是其门控机制的关键部分之一,负责决定在给定时间步 t t