粒子群(PSO)优化算法验证及实现

粒子群优化算法验证及实现

算法背景简介

粒子群优化算法(Partical Swarm Optimization PSO)

粒子群中的每一个粒子都代表一个问题的可能解,通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。

由于PSO操作简单、收敛速度快,因此在函数优化、 图像处理、大地测量等众多领域都得到了广泛的应用。 随着应用范围的扩大,PSO算法存在早熟收敛、维数灾难、易于陷入局部极值等问题需要解决.

粒子群算法最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。最简单有效的策略?寻找鸟群中离食物最近的个体来进行搜素。PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。

用一种粒子来模拟上述的鸟类个体,每个粒子可视为N维搜索空间中的一个搜索个体,粒子的当前位置即为对应优化问题的一个候选解,粒子的飞行过程即为该个体的搜索过程.粒子的飞行速度可根据粒子历史最优位置和种群历史最优位置进行动态调整.粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子单独搜寻的最优解叫做个体极值,粒子群中最优的个体极值作为当前全局最优解。不断迭代,更新速度和位置。最终得到满足终止条件的最优解。

算法实现思路

在这里插入图片描述

1、初始化

首先,我们设置最大迭代次数,目标函数的自变量个数,粒子的最大速度,位置信息为整个搜索空间,我们在速度区间和搜索空间上随机初始化速度和位置,设置粒子群规模为M,每个粒子随机初始化一个飞翔速度。

2、 个体极值与全局最优解

定义适应度函数,个体极值为每个粒子找到的最优解,从这些最优解找到一个全局值,叫做本次全局最优解。与历史全局最优比较,进行更新。

3、 更新速度和位置的公式
在这里插入图片描述

4、 终止条件

(1)达到设定迭代次数;

(2)代数之间的差值满足最小界限

在这里插入图片描述

以上就是最基本的一个标准PSO算法流程。和其它群智能算法一样,PSO算法在优化过程中,种群的多样性和算法的收敛速度之间始终存在着矛盾.对标准PSO算法的改进,无论是参数的选取、小生境技术的采用或是其他技术与PSO的融合,其目的都是希望在加强算法局部搜索能力的同时,保持种群的多样性,防止算法在快速收敛的同时出现早熟收敛。

算法运行及其分析

在粒子群算法当中,我们一共有三个参数需要修改对比,分别是:

c1、c2 %加速因子

w %惯性权重

同时,还有一个种群规模和待优化的函数,也需要在实验过程中进行修改。他们是:

sizepop %种群规模

dim %适应度函数维数

(其中func中:1为Rastrigin函数,2为Schaffer函数,3为Griewank函数)
在这里插入图片描述下面就先演示一次随机数据迭代1000次的运行结果截图:

参数如下:
c1 = 1.21345;%加速因子
c2 = 1.31345;
w = 0.9 %惯性权重
dim=9 %适应度函数维数
func=1; %选择待优化的函数,1为Rastrigin,2为Schaffer,3为Griewank
(本次实验默认func = 1)
运行结果如下:
在这里插入图片描述迭代次数
在这里插入图片描述从第654代开始最优适应度为0.000000

在这里插入图片描述

探究c1、c2 、w、sizepop、dim各参数对算法的影响(默认func = 1 (Rastrigin))

一、dim=9、sizepop=400时,变化c1、c2、w参数,查看结果(取五次最佳适应度作平均值)
1、c1 = 1.21345/ c2 = 1.31345/ w = 0.9

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
最优适应度 0.000000

2、c1 = 1.71345/ c2 = 1.11345/ w = 0.6

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
最优适应度:0.000000

3、c1 = 1.91345/ c2 = 1.18845/ w = 0.9

在这里插入图片描述在这里插入图片描述在这里插入图片描述
最优适应度:4.045842

4、c1 = 1.31345/ c2 = 1.19945/ w = 0.7

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
最优适应度:1.989919

5、c1 = 1.11345/ c2 = 1.51945/ w = 0.9

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最优适应度:0.000000

平均最佳适应度
(0.000000+0.000000+0.000000+1.989919+4.045842)/5 = 1.2071522

二、 c1 = 1.19945/ c2 = 1.19945、w=0.9时,变化dim、sizepop参数,查看结果(取五次最佳适应度作平均值)
1、dim = 7/ sizepop = 300

在这里插入图片描述在这里插入图片描述在这里插入图片描述

最优适应度:0.000000

2、dim = 8/ sizepop =200

在这里插入图片描述在这里插入图片描述在这里插入图片描述
最优适应度:2.044594

3、dim = 8/ sizepop = 250

在这里插入图片描述在这里插入图片描述在这里插入图片描述
最优适应度:2.985490

4、dim = 8/ sizepop = 300

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
最优适应度:1.451769

5、dim = 8/ sizepop = 150

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最优适应度:0.006576

平均最佳适应度
(2.044594+0.000000+2.985490+1.451769+0.006576)/5 = 1.2976856

PSO代码块展示

1、PSO.m函数

%% 清空环境
clc
clear

%% 参数初始化
%粒子群算法中的三个参数
c1 = 1.49345;%加速因子
c2 = 1.44345;
w = 0.9   %惯性权重
ws = 0.9
we = 0.4
maxgen=1000;   % 进化次s数  
sizepop=400;   %种群规模

Vmax=1;       %限制速度围
Vmin=-1;     
popmax=5;    %变量取值范围
popmin=-5;
dim=9;       %适应度函数维数

func=1;       %选择待优化的函数,1为Rastrigin,2为Schaffer,3为Griewank
Drawfunc(func);%画出待优化的函数,只画出二维情况作为可视化输出

%% 产生初始粒子和速度
for i=1:sizepop
    %随机产生一个种群
    pop(i,:)=popmax*rands(1,dim);    %初始种群
    V(i,:<
  • 8
    点赞
  • 63
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 粒子群优化(PSO)是一种基于群体智能的算法,它模拟了鸟群、鱼群等群体行为,通过不同个体之间的信息交流和协同来找到最优解。PSO算法的应用十分广泛,例如在寻优、特征选择、数据挖掘等领域都取得很好的结果。 验证PSO算法的效果主要有两种方法:一种是将PSO算法与其他优化算法进行比较,如遗传算法、模拟退火算法等,通过比较结果来验证PSO的有效性;另一种是将PSO算法与实际问题进行应用,并与已有解决方案进行比较,验证PSO算法的成功率和效果。 在实现PSO算法时,首先需要定义问题的适应度函数和参数设置,如粒子数、惯性权重、加速常数等。然后根据群体智能的原理,我们需要初始化一定量的粒子,并给它们随机分配一个初始位置和速度。在每次迭代中,通过衡量每个粒子的适应度值,并考虑粒子自身的历史最优位置和群体最优位置,来更新每个粒子的速度和位置。最后,通过不断迭代,我们可以得到逐渐优化的结果,直到达到预设停止条件为止。 PSO算法的优点在于简单易懂,快速收敛,适用于多目标优化和非线性问题。但也存在一些不足之处,如易陷入局部最优、对参数设置敏感等问题,需要根据具体情况进行调整。 总之,通过对PSO算法的验证实现,可以得到很好的优化效果,并应用于实际问题中。 ### 回答2: 粒子群优化算法是一种常用的优化算法,广泛应用于许多领域。验证实现该算法的过程需要注意以下几点: 首先,理论分析。粒子群优化算法具有全局搜索能力和较快收敛速度,但对于特定的问题,其搜索效果并不一定好。在验证实现该算法时,需要对算法的性能进行理论分析,包括算法的搜索效果、运行时间、可扩展性等方面。 其次,算法实现粒子群优化算法实现需要注意参数的设置、编程技巧等方面。例如,需要选择合适的惯性权重、速度限制等参数,同时要注意避免算法陷入局部最优解。 最后,实验验证。在实验验证过程中,需要选择适当的测试函数和数据集,并与其他优化算法进行比较。通过实验的结果,可以评估粒子群优化算法的性能和优越性,也可以探究算法的局限性和改进空间。 总之,粒子群优化算法验证实现是一个综合的过程,需要理论分析、算法实现和实验验证相结合,才能得到较为准确和可靠的结果。 ### 回答3: 粒子群PSO)算法是一种基于自然界鸟群活动的优化算法。该算法通过模拟最优粒子在寻找食物的过程,逐渐优化目标函数,以此找到最优解。在实际应用中,PSO算法已被广泛应用于多种领域,如网络优化、机器学习、图像处理等。 PSO算法的核心思想是将待优化参数看作一群粒子,每个粒子都有一定的速度和位置。通过不断调整速度和位置,粒子逐渐靠近最优解。在优化过程中,每个粒子要同时跟踪其自身的最优位置和全局最优位置。通过不断迭代,所有粒子逐渐收敛到全局最优解附近。 实现PSO算法的过程中,需要有合适的目标函数、参数设置、停止准则等。在验证PSO算法时,可以对比不同参数设置下的收敛速度和求解精度,以及与其他优化算法的效果对比。 由于PSO算法易于实现、收敛速度较快、对于非线性、非凸优化问题具有一定的优势,因此受到广泛关注。未来,PSO算法将继续进行改进和拓展应用,以满足更多实际需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值