【读论文】An Explanation of In-context Learning as Implicit Bayesian Inference

斯坦福大学研究人员的论文探讨了GPT-3等大型语言模型的上下文学习能力,将其视为隐式贝叶斯推理。论文通过理论分析和实验证明了上下文学习的机制,并揭示了模型规模等因素对其准确性的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【腾讯文档】大模型学习 https://docs.qq.com/s/2fc7DPC-jPH5R0bD07bcXW
b站:https://www.bilibili.com/video/BV11r421H7sC/

这篇论文《An Explanation of In-context Learning as Implicit Bayesian Inference》由斯坦福大学的研究人员撰写,主要研究了大型语言模型(如GPT-3)在上下文学习(in-context learning)方面的能力。上下文学习是指模型通过观察输入输出示例(prompt)来学习执行下游任务,而无需显式地预训练来学习这些示例。尽管这种能力令人惊讶,但目前还不清楚是什么使得上下文学习成为可能。
论文的主要内容包括:

  1. 引言:介绍了大型语言模型(LMs)的上下文学习能力,以及这种能力在实际应用中的潜力和挑战。
  2. 上下文学习设置:定义了预训练分布和提示分布,以及它们在上下文学习中的作用。预训练分布是通过从潜在概念中采样来生成文档的࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值