论文由Hanyi Xu、Wensheng Gan、Zhenlian Qi、Jiayang Wu和Philip S. Yu撰写的
Large Language Models for Education: A Survey,是关于大型语言模型(LLMs)在教育领域应用的综合调查研究。
1. 引言
- 论文讨论了人工智能(AI)尤其是大型语言模型(LLMs)对传统教育的深远影响。
- 介绍了LLMs基于深度学习、预训练、微调和强化学习等技术,作为智能教育的强大辅助工具。
- 强调了LLMs在提升教学质量、改变教育模式和教师角色方面的潜力。
2. LLMs在教育领域的特性
- 讨论了LLMs的大规模参数、通用性、预训练与微调、突现能力、数据碎片化和高复杂性成本等特点。
- 教育领域的特性包括低门槛、大规模容量、完善的系统、在线教育的兴起、低龄化教育、智能化和个性化教育。
3. LLMs与教育的结合
- 探讨了LLMs与教育结合的原因,包括NLP、数据分析和文本生成能力,以及教育行业对AI的高度接受度。
- 讨论了LLMs在教育领域的具体应用,如跨学科教学、个性化需求识别、引导