https://arxiv.org/pdf/2402.18041v1
大型语言模型数据集:一项全面调查
摘要
本文着手探索大型语言模型(LLM)数据集,这些数据集在LLM的显著进步中扮演着至关重要的角色。数据集作为基础架构,类似于根系,支撑并滋养着LLM的发展。因此,对这些数据集的检查成为了研究中的关键话题。为了解决目前缺乏对LLM数据集全面概述和深入分析的问题,并洞察它们的现状和未来趋势,本调查从五个角度整合并分类了LLM数据集的基本方面:(1)预训练语料库;(2)指令微调数据集;(3)偏好数据集;(4)评估数据集;(5)传统自然语言处理(NLP)数据集。本调查揭示了当前的挑战,并指出了未来研究的潜在途径。此外,还提供了现有可用数据集资源的全面回顾,包括来自444个数据集的统计数据,涵盖8种语言类别,跨越32个领域。数据集统计中融入了20个维度的信息。预训练语料库的总数据量超过了774.5TB,其他数据集的实例数量达到了7亿。我们的目标是呈现LLM文本数据集的全貌,为该领域