Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models提出了一种自动化更新数据集的框架,通过模仿和扩展现有数据集的策略,解决基准泄露问题并提供可控难度,确保对大语言模型的可靠、及时评估。
https://openreview.net/pdf?id=EvEqYlQv8T
文章目录
https://openreview.net/pdf?id=EvEqYlQv8T
摘要
大语言模型(LLMs)在各种自然语言任务中表现出色,但这种进步也带来了一个问题:随着模型的能力提高,现有的评估数据集变得太容易,很快就不够用了。构建更难的数据集既耗时又昂贵,而仅靠人工创建是不现实的。为了解决这个问题,论文提出了一个自动化更新数据集的方法,用于及时且可靠地评估大语言模型。主要有两种更新策略:
-
模仿策略(Mimicking Strategy):