论文阅读:NeurIPS-2024.Automating Dataset Updates Towards Reliable and Timely Evaluation of Large

Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models提出了一种自动化更新数据集的框架,通过模仿和扩展现有数据集的策略,解决基准泄露问题并提供可控难度,确保对大语言模型的可靠、及时评估。

https://openreview.net/pdf?id=EvEqYlQv8T

https://openreview.net/pdf?id=EvEqYlQv8T

摘要

大语言模型(LLMs)在各种自然语言任务中表现出色,但这种进步也带来了一个问题:随着模型的能力提高,现有的评估数据集变得太容易,很快就不够用了。构建更难的数据集既耗时又昂贵,而仅靠人工创建是不现实的。为了解决这个问题,论文提出了一个自动化更新数据集的方法,用于及时且可靠地评估大语言模型。主要有两种更新策略:

  1. 模仿策略(Mimicking Strategy):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值