论文阅读:2024 arxiv Proxy-RLHF: Decoupling Generation and Alignment in Large Language Model with Proxy

https://arxiv.org/pdf/2403.04283

https://www.doubao.com/chat/3873465996827394

Proxy-RLHF: Decoupling Generation and Alignment in Large Language Model with Proxy

速览

这篇论文主要介绍了一种名为Proxy-RLHF的新方法,旨在降低大语言模型(LLMs)对齐人类价值观的计算成本。以下是核心内容的通俗解读:

1. 背景:传统方法的痛点

  • RLHF的问题:现有的主流方法RLHF(基于人类反馈的强化学习)需要大语言模型同时负责“生成内容”和“对齐人类价值观”,导致计算成本极高。
    • 例如,RLHF需要训练4个大型模型(策略、奖励、价值、参考模型),每个都有数十亿参数,占用大量GPU内存和计算资源。

2. 核心创新:分离生成与对齐

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值