向量空间的z变换

首先,我们可以将一个离散时间信号看作一个向量,这个向量包含了一系列时间点上的采样值。设这个向量为 x \mathbf{x} x,其中第 n n n 个分量为 x n x_n xn

现在,我们将离散时间信号从时间域转换到z域。我们可以把z看作是一个线性变换,这个变换将一个向量 x \mathbf{x} x 映射到另一个向量 X ( z ) \mathbf{X}(z) X(z),即:

X ( z ) = ∑ n = 0 ∞ x n z − n \mathbf{X}(z) = \sum_{n=0}^\infty x_n z^{-n} X(z)=n=0xnzn

这里, z z z 是一个复数,它代表了z变换的变量, z − n z^{-n} zn z z z n n n 次幂的倒数。 X ( z ) \mathbf{X}(z) X(z) 的每个分量是一个关于 z z z 的多项式,可以将它看作是一个向量空间中的向量。

注意到在这个线性变换中,每个分量的系数 x n x_n xn 都是线性无关的,因为每个 x n x_n xn 只影响 X ( z ) \mathbf{X}(z) X(z) 中的一个分量,而这些分量之间是独立的。因此,我们可以将 x \mathbf{x} x X ( z ) \mathbf{X}(z) X(z) 看作是两个向量空间中的向量,它们之间存在一个线性映射,即:

Z : x ↦ X ( z ) \mathcal{Z} : \mathbf{x} \mapsto \mathbf{X}(z) Z:xX(z)

这个映射被称为z变换。因为z变换是一个线性变换,所以它保持向量空间的线性性质,例如线性组合和向量空间的基等。

在这个向量空间的观点下,z变换的作用就是将一个时间域中的离散时间信号转换为一个z域中的多项式向量,它们之间存在一个线性映射。这个线性映射的矩阵是由离散时间信号的采样值构成的,这些采样值相当于向量空间的基。这个映射可以帮助我们更方便地分析离散时间信号的频率特性和其他特性。

在这里,我们可以将 X ( z ) \mathbf{X}(z) X(z) 看作是一个关于变量 z z z 的多项式向量,其中每个分量 X n X_n Xn 都是一个多项式,可以表示为:

X n = ∑ k = 0 N − 1 x k z − k n X_n = \sum_{k=0}^{N-1} x_k z^{-kn} Xn=k=0N1xkzkn

其中, x k x_k xk 是离散时间信号 x \mathbf{x} x 的第 k k k 个样本值, N N N 是离散时间信号的长度, z z z 是复数, z − n z^{-n} zn z z z n n n 次幂的倒数。因此, X ( z ) \mathbf{X}(z) X(z) 可以表示为:

X ( z ) = [ X 0   X 1   ⋮   X N − 1 ] = [ ∑ k = 0 N − 1 x k   ∑ k = 0 N − 1 x k z − 1 k   ⋮   ∑ k = 0 N − 1 x k z − ( N − 1 ) k ] \mathbf{X}(z) = \begin{bmatrix} X_0 \ X_1 \ \vdots \ X_{N-1} \end{bmatrix} = \begin{bmatrix} \sum_{k=0}^{N-1} x_k \ \sum_{k=0}^{N-1} x_k z^{-1k} \ \vdots \ \sum_{k=0}^{N-1} x_k z^{-(N-1)k} \end{bmatrix} X(z)=[X0 X1  XN1]=[k=0N1xk k=0N1xkz1k  k=0N1xkz(N1)k]

因此,我们可以将 X ( z ) \mathbf{X}(z) X(z) 看作是一个向量空间中的向量,它的每个分量都是一个关于 z z z 的多项式。在这个向量空间中,我们可以定义加法和标量乘法等运算,并且可以证明,它满足向量空间的基本性质,例如封闭性、结合律、分配律等。

如果我们将 X ( z ) \mathbf{X}(z) X(z) 看作是一个向量,那么它所对应的向量空间就是由所有关于 z z z 的多项式构成的向量空间,即:

P z = a 0 + a 1 z − 1 + a 2 z − 2 + ⋯ + a k z − k + ⋯ \mathcal{P}_z = {a_0 + a_1z^{-1} + a_2z^{-2} + \cdots + a_kz^{-k} + \cdots} Pz=a0+a1z1+a2z2++akzk+

其中, a k a_k ak 是一个常数,表示多项式 a ( z ) a(z) a(z) z − k z^{-k} zk 的系数。因此, X ( z ) \mathbf{X}(z) X(z) 所在的向量空间是一个无限维的向量空间。

这个向量空间的基是 N N N 个向量 e 0 , e 1 , ⋯   , e N − 1 {\mathbf{e}_0, \mathbf{e}_1, \cdots, \mathbf{e}_{N-1}} e0,e1,,eN1,其中:

e k = [ 1   z − k   z − 2 k   ⋮   z − ( N − 1 ) k ] \mathbf{e}_k = \begin{bmatrix} 1 \ z^{-k} \ z^{-2k} \ \vdots \ z^{-(N-1)k} \end{bmatrix} ek=[1 zk z2k  z(N1)k]

这些向量是线性无关的,可以证明它们张成了整个向量空间。因此, X ( z ) \mathbf{X}(z) X(z) 可以表示为基向量的线性组合:

X ( z ) = X 0 e 0 + X 1 e 1 + ⋯ + X N − 1 e N − 1 \mathbf{X}(z) = X_0 \mathbf{e}0 + X_1 \mathbf{e}1 + \cdots + X{N-1} \mathbf{e}{N-1} X(z)=X0e0+X1e1++XN1eN1

其中, X 0 , X 1 , ⋯   , X N − 1 X_0, X_1, \cdots, X_{N-1} X0,X1,,XN1 是关于 z z z 的多项式,表示 X ( z ) \mathbf{X}(z) X(z) 在基向量 e 0 , e 1 , ⋯   , e N − 1 {\mathbf{e}_0, \mathbf{e}1, \cdots, \mathbf{e}{N-1}} e0,e1,,eN1 上的投影系数。

好的,让我们以 N = 3 N=3 N=3 的情况为例,假设我们有一个长度为 3 3 3 的离散时间序列 x 0 , x 1 , x 2 {x_0, x_1, x_2} x0,x1,x2,它可以表示为一个向量:

x = [ x 0   x 1   x 2 ] \mathbf{x} = \begin{bmatrix} x_0 \ x_1 \ x_2 \end{bmatrix} x=[x0 x1 x2]

我们可以将 z z z 看作是一个变换矩阵,对 x \mathbf{x} x 进行 z z z 变换,得到:

X ( z ) = E x ( z )   = [ 1 1 1   1 ω 3 ω 3 2   1 ω 3 2 ω 3 ] [ x 0 ( z )   x 1 ( z )   x 2 ( z ) ]   = [ X 0 ( z )   X 1 ( z )   X 2 ( z ) ] \begin{aligned} \mathbf{X}(z) &= \mathbf{E} \mathbf{x}(z) \ &= \begin{bmatrix} 1 & 1 & 1 \ 1 & \omega_3 & \omega_3^2 \ 1 & \omega_3^2 & \omega_3 \end{bmatrix} \begin{bmatrix} x_0(z) \ x_1(z) \ x_2(z) \end{bmatrix} \ &= \begin{bmatrix} X_0(z) \ X_1(z) \ X_2(z) \end{bmatrix} \end{aligned} X(z)=Ex(z) =[111 1ω3ω32 1ω32ω3][x0(z) x1(z) x2(z)] =[X0(z) X1(z) X2(z)]

其中, ω 3 = e 2 π i / 3 \omega_3 = e^{2\pi i/3} ω3=e2πi/3 X k ( z ) X_k(z) Xk(z) x ( z ) \mathbf{x}(z) x(z) 在基向量 e 0 , e 1 , e 2 {\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2} e0,e1,e2 上的投影系数,它们是关于 z z z 的多项式。例如, X 1 ( z ) X_1(z) X1(z) 可以表示为:

X 1 ( z ) = x 0 ( z ) + ω 3 x 1 ( z ) + ω 3 2 x 2 ( z ) X_1(z) = x_0(z) + \omega_3 x_1(z) + \omega_3^2 x_2(z) X1(z)=x0(z)+ω3x1(z)+ω32x2(z)

因此,我们可以将 X ( z ) \mathbf{X}(z) X(z) 看作是一个关于 z z z 的向量,其中每个分量是关于 z z z 的多项式。

好的,再举一个更具体的例子。假设我们有一个长度为 3 3 3 的离散时间序列 1 , 2 , 3 {1,2,3} 1,2,3,我们可以将它表示为一个向量:

x = [ 1   2   3 ] \mathbf{x} = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} x=[1 2 3]

我们希望对这个序列进行 z z z 变换,即找到一个关于 z z z 的变换矩阵,将 x \mathbf{x} x 映射到一个新的向量 X ( z ) \mathbf{X}(z) X(z) 中。

根据 z z z 变换的定义,我们有:

X ( z ) = E x ( z ) \mathbf{X}(z) = \mathbf{E} \mathbf{x}(z) X(z)=Ex(z)

其中 E \mathbf{E} E 是一个矩阵,它的每一行是基向量 e 0 , e 1 , e 2 {\mathbf{e}_0, \mathbf{e}_1, \mathbf{e}_2} e0,e1,e2。根据定义,我们有:

e 0 = [ 1 0 0 ] \mathbf{e}_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} e0=[100]

e 1 = [ 0 1 0 ] \mathbf{e}_1 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} e1=[010]

e 2 = [ 0 0 1 ] \mathbf{e}_2 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} e2=[001]

根据 z z z 变换的公式,我们有:

X 0 ( z ) = 1 + 2 z − 1 + 3 z − 2   X 1 ( z ) = 1 + 2 z − 1 ω 3 + 3 z − 2 ω 3 2   X 2 ( z ) = 1 + 2 z − 1 ω 3 2 + 3 z − 2 ω 3 \begin{aligned} X_0(z) &= 1 + 2z^{-1} + 3z^{-2} \ X_1(z) &= 1 + 2z^{-1}\omega_3 + 3z^{-2}\omega_3^2 \ X_2(z) &= 1 + 2z^{-1}\omega_3^2 + 3z^{-2}\omega_3 \end{aligned} X0(z)=1+2z1+3z2 X1(z)=1+2z1ω3+3z2ω32 X2(z)=1+2z1ω32+3z2ω3

其中 ω 3 = e 2 π i / 3 \omega_3 = e^{2\pi i/3} ω3=e2πi/3 是一个复数。因此,我们可以将 X ( z ) \mathbf{X}(z) X(z) 看作是一个关于 z z z 的向量,其中每个分量是关于 z z z 的多项式。

这个公式表示一个 N N N 维向量 X ( z ) \mathbf{X}(z) X(z),其中 X 0 , X 1 , … , X N − 1 X_0, X_1, \dots, X_{N-1} X0,X1,,XN1 是实数或复数, e 0 , e 1 , … , e N − 1 \mathbf{e}_0, \mathbf{e}1, \dots, \mathbf{e}{N-1} e0,e1,,eN1 是一组基向量,可以看作是 N N N 维空间的坐标轴。每个基向量 e i \mathbf{e}_i ei 对应于 z − i z^{-i} zi 这个单项式,因此 X ( z ) \mathbf{X}(z) X(z) 的第 i i i 个分量 X i X_i Xi 就对应于向量在 e i \mathbf{e}_i ei 方向上的投影长度,也可以看作是在 z − i z^{-i} zi 这个单项式的系数。因此, X ( z ) \mathbf{X}(z) X(z) 可以看作是多项式系数的向量表示。

在上述方程中,每个 x i [ n ] x_i[n] xi[n] 都是一个离散时间序列。我们可以将这些序列看作向量空间中的向量,然后将它们按照时间顺序排列成一个矩阵 X \mathbf{X} X

X = [ x 0 [ 0 ] x 0 [ 1 ] ⋯ x 0 [ N − 1 ]   x 1 [ 0 ] x 1 [ 1 ] ⋯ x 1 [ N − 1 ]   ⋮ ⋮ ⋱ ⋮   x N − 1 [ 0 ] x N − 1 [ 1 ] ⋯ x N − 1 [ N − 1 ] ] \mathbf{X} = \begin{bmatrix} x_0[0] & x_0[1] & \cdots & x_0[N-1] \ x_1[0] & x_1[1] & \cdots & x_1[N-1] \ \vdots & \vdots & \ddots & \vdots \ x_{N-1}[0] & x_{N-1}[1] & \cdots & x_{N-1}[N-1] \end{bmatrix} X=[x0[0]x0[1]x0[N1] x1[0]x1[1]x1[N1]  xN1[0]xN1[1]xN1[N1]]

然后对 X \mathbf{X} X 做 z 变换,得到一个向量 X ( z ) \mathbf{X}(z) X(z) X ( z ) \mathbf{X}(z) X(z) 中的每个分量都是一个关于 z z z 的多项式,可以将它看作是一个向量空间中的向量。这个向量空间的基是 1 , z − 1 , z − 2 , ⋯   , z − N + 1 {1, z^{-1}, z^{-2}, \cdots, z^{-N+1}} 1,z1,z2,,zN+1,因此 X ( z ) \mathbf{X}(z) X(z) 可以表示为:

X ( z ) = X 0 e 0 + X 1 e 1 + ⋯ + X N − 1 e N − 1 \mathbf{X}(z) = X_0 \mathbf{e}0 + X_1 \mathbf{e}1 + \cdots + X_{N-1} \mathbf{e}{N-1} X(z)=X0e0+X1e1++XN1eN1

其中 X i X_i Xi 是一个关于 z z z 的多项式, e i \mathbf{e}_i ei 是向量空间中的基向量。而 X 1 ( z ) X_1(z) X1(z) 之所以长成那个样子,是因为 X 1 ( z ) X_1(z) X1(z) 是由 X ( z ) \mathbf{X}(z) X(z) 中的第一列构成的向量做 DFT 变换得到的。而 DFT 变换的基向量是 1 , ω N , ω N 2 , ⋯   , ω N N − 1 {1, \omega_N, \omega_N^2, \cdots, \omega_N^{N-1}} 1,ωN,ωN2,,ωNN1,其中 ω N = e − 2 π i / N \omega_N = e^{-2\pi i/N} ωN=e2πi/N。所以, X 1 ( z ) X_1(z) X1(z) 可以表示为:

X 1 ( z ) = x 0 ( z ) + ω N x 1 ( z ) + ω N 2 x 2 ( z ) + ⋯ + ω N N − 1 x N − 1 ( z ) X_1(z) = x_0(z) + \omega_N x_1(z) + \omega_N^2 x_2(z) + \cdots + \omega_N^{N-1} x_{N-1}(z) X1(z)=x0(z)+ωNx1(z)+ωN2x2(z)++ωNN1xN1(z)

其中 x i ( z ) x_i(z) xi(z) X ( z ) \mathbf{X}(z) X(z) 的第 i i i 个分量。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值