机器学习(9)误差分析、查准率和召回率

误差分析

在构建模型时,Andrew Ng教授建议以下步骤:
首先快速构建一个粗糙的模型,不要求精度,并通过交叉检验来测试模型。然后通过学习曲线的方法来查看更多特征、更多数据集是否起作用,即确定构建的模型是否存在高偏差或者高方差的情况。还可以通过误差分析的方式,比如我们在构建完一个垃圾邮件分类模型后,用交叉检验来测试模型,我们重点分析分类错误的邮件特征,并以此来调整模型。可以构建一个实数性的指标,来对是否对模型做出调整依据,比如:交叉检验错误率。

不对称性分类的误差分析

假设有如下这种情况:
某个癌症预测模型,预测患者得癌症为1,没有患病为0。假设有一堆案例,其中患病的比例为0.5%,也就是样本集中,两类样本的数量差距过大。而这个模型的错误率为1%。但是如果我们有另一种模型它不管输入什么,输出的结果都为0,那么它的错误率就为0.5%。
很明显第二种模型不具备预测功能,但是却比第一种模型错误率低,所以对于不对称性分类的样本集而言,像交叉检验错误率这种指标就不太适用, 需要新的指标来评估算法。

查准率和召回率

这两个指标对不对称性分类具有良好的效果。接着上例,我们把预测的和实际的结合一下:
在这里插入图片描述
从左到右,从上到下分别是:真阳性,假阳性,假阴性,真阴性。
这很好理解,我们把得癌症的为阳性,即为1,没有的癌症的为阴性,即为0。
在这里插入图片描述

查准率 = 真 阳 性 真 阳 性 + 假 阳 性 =\frac{真阳性}{真阳性+假阳性} =+,就是预测阳性正确的数量除以总预测阳性的数量。
召回率= 真 阳 性 真 阳 性 + 假 阴 性 \frac{真阳性}{真阳性+假阴性} +,就是预测阳性正确的数量除以样本中所有阳性的数量。
有了这两种指标,算法模型就不能通过只预测0来欺骗我们,因为两个指标都为0。所以这两个指标肯定越高越好,但是到具体问题就要有所侧重。

查准率和召回率的权衡

当我们处理癌症预测等逻辑回归问题时,可以通过调整临界值。逻辑回归都会使用 s i g m o i d sigmoid sigmoid函数一般情况下我们一般把临界值都设为0.5。
在这里插入图片描述
可以通过调整临界值来对查准率和召回率权衡。

侧重查准率

假设我们希望在非常有把握的情况下,得到阳性结果,把临界值从0.5增加到0.7,或者0.9等,这时候预测的阳性结果准确性比较高,可信度较大,但是召回率就偏低了,因为预测阳性的数量变少了。

侧重召回率

假设我们希望不漏掉阳性患者,即宁可错杀,不可放过。把临界值从0.5减小到0.4,或者0.2等,这时候预测的阳性结果数量变多,假阴性比较少,但是查准率就比较低,因为预测阳性的数量变多了。

查准率和召回率的调和平均数

在这里插入图片描述
假设有三种算法,它们对应的查准率和召回率如上图,这时候我们就会陷入难以抉择的境地,因为有两个变量,不知道那个模型更好。这时候我们就需要一个评估度量值。
第一种,求二者的平均值。
在这里插入图片描述

第二种,求二者的调和平均数。
在这里插入图片描述
计算结果如下图:
在这里插入图片描述

很明显,当使用平均数为评估度量值时,算法三最优,也就是高召回率,很多误伤,这不是一个好的评估度量值。
当使用调和平均数为评估度量值时,算法一最优,它充分考虑了查准率和召回率,不会选择偏向一方的算法。
总之, 查准率和召回率的调和平均数能很好地作为评估度量值,帮助我们选择合理的参数和模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值