反馈顶点集

首先介绍一下反馈顶点集的定义:

         设顶点集合F,使得把这些顶点移除后,图中无圈(圈和环的定义类似)。如下图中,反馈顶点集可以为{2}或{3}或{2,3}等等。

现在来引入问题:

像上图中,{2}和{3}即为最小费用子集,即最优解

下面来介绍图的一个概念——图G中简单圈C的特征向量,举个例子会比较清晰

图G的圈数cyc(G)——是指圈空间的维数,而圈空间是由图G中的所有简单圈的特征向量生成,而cycle123和cycle3456是简单圈,cycle12456是复杂圈,除了第一个顶点和最后一个顶点相同外,其余顶点不重复出现的回路叫简单回路这个还是比较好理解的

图G的连通分支数comps(G)——连通分支的概念和极大连通子图类似,也就是极大连通子图的数目

介绍完所需要的概念后,引入一个定理:

先上例子:

要证上等式,只需证明|E|  -  |V|  +  K(G)<=cyc(G)<=|E|  -  |V|  +  K(G)即可

由于证明过于复杂难懂,详见《近似算法》第49-50页

这里的思路转自https://blog.csdn.net/zhonghangliu/article/details/106699186

1. 证明|E|  -  |V|  +  K(G)<=cyc(G)

G是一个连通图,任取T是G上的一个生成树,我们定义T-基础圈为一条非树边和树边构成的简单圈(在生成树的基础上任意再引入一条非树边都会得到一个简单圈)所以我们一共能得到|E|-|V|+1个T-基础圈(树边有|V|-1个),并且这些圈是线性无关的(很显然,因为他们都独占一个非树边),既然都是圈,那么它们一定是G上整个圈空间的子集,他们也一定生成了一个子空间,因此cyc(G) ≥ |E|−|V|+1

2. 证明cyc(G)<=|E|  -  |V|  +  K(G)

首先说明一个事实:对于生成树T,每条树边t都能对应一个仅仅包含这一条树边和其它一些非树边的割(也可以对应多个,只要树边唯一确定即可)。这个可以想想到,一个割只需要和一条树边相交就能把树切断,且树把图划分成的区域都是与外界相连的。既然每个割都是有一个独占的树边,那他们之间就是线性无关的,所以用割边就能生成一个|V|-1维割空间

 

在得到上面的等式后,我们设 δG(v)是删除顶点v后图的圈数的减少量

由于删除反馈顶点集F后G的圈数变为0了,所以可以得到下面这个等式

根据下面的引理(证明参考《近似算法》第50页)

可得

设存在常数c使得每个顶点v的权是c*δG(v),权函数为w,则根据上面的不等式我们可以得到:

设deg(v)表示G中v的度,comps(G-v)表示从G中删除v后形成的连通分支数,可得:

 

 

最终我们得出:

 

 

 

 

 

 

 

 

 

 

 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值