使用—nproc_per_node进行多卡训练时,指定gpu训练

文章介绍了如何在使用`--nproc_per_node`参数进行多GPU训练时,通过设置CUDA_VISIBLE_DEVICES环境变量排除特定GPU,确保指定数量的GPU参与计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用 --nproc_per_node 参数时,如果有四个 GPU,但不想使用 GPU 1,可以使用 CUDA_VISIBLE_DEVICES 环境变量来限制可见的 GPU。

CUDA_VISIBLE_DEVICES=0,2,3 python training.py --nproc_per_node=3

在这个例子中,CUDA_VISIBLE_DEVICES 设置了可见的 GPU,排除了 GPU 1。然后,--nproc_per_node=3 指定了每个节点(即每台机器)上使用的 GPU 数量。这样就可以指定gpu训练了

### YOLOv11 训练 `subprocess.CalledProcessError` 问题分析 在GPU分布式训练过程中,如果遇到 `subprocess.CalledProcessError` 错误,通常表明子进程执行失败。这种错误可能由种原因引起,包括环境配置不当、脚本路径错误、CUDA设备分配冲突或其他运行异常。 #### 可能的原因及解决方案 1. **Conda 环境未激活** 如果使用Python 解释器位于 Conda 虚拟环境中,则需要确保该虚拟环境已正确激活。如果没有激活环境,可能导致依赖库缺失或版本不匹配[^2]。 ```bash source /path/to/your_conda/bin/activate your_env_name ``` 2. **Python 路径错误** 子进程中调用的 Python 解释器路径应与当前环境一致。如果路径指定错误,可能会加载错误的解释器或缺少必要的依赖项[^1]。 3. **Distributed 数据并行模式参数设置** 使用 `torch.distributed.run` 进行GPU训练,需正确设置 `--nproc_per_node` 和 `--master_port` 参数。前者表示每台机器上可用的 GPU 数量,后者用于定义节点间通信端口。如果这些参数设置不合理,可能导致初始化失败[^3]。 - 检查 `--nproc_per_node` 是否等于实际可用 GPU 的数量。 - 验证 `--master_port` 是否被其他程序占用。可以尝试更换端口号来排除此可能性。 4. **临文件路径问题** 训练脚本通过 `-m torch.distributed.run` 启动,会动态生成一个临文件供各进程加载。如果临文件路径不可访问或者存在权限问题,也可能引发错误。 5. **硬件资源不足** 当系统内存或显存不足以支持所选批量大小 (`--batch`) 或模型复杂度,也会抛出类似的错误。降低批处理规模或减少参与计算的 GPU 数量可能是有效的缓解措施。 6. **代码逻辑缺陷** 若上述条件均满足但仍出现问题,可考虑是否存在潜在的代码实现漏洞。此建议按照官方文档指导逐步排查,并利用断点调试工具定位具体发生崩溃的位置[^4]。 以下是调整后的命令模板: ```bash python -m torch.distributed.launch \ --nnodes=1 \ --node_rank=0 \ --nproc_per_node=<number_of_gpus> \ --master_addr="localhost" \ --master_port=<unused_port_number> \ train.py \ --batch <batch_size> \ --data coco.yaml \ --weights yolov5s.pt \ --device <gpu_ids> ``` 请替换 `<number_of_gpus>`、`<unused_port_number>` 和 `<batch_size>` 等占位符为适合您场景的具体数值。 --- ### 示例修正版启动指令 假设我们拥有两块 GPU 并希望以批次大小为 32 开始 COCO 数据集上的预训练权重微调任务,则完整的 CLI 应如下所示: ```bash python -m torch.distributed.run \ --nproc_per_node=2 \ --master_port=29500 \ train.py \ --batch 32 \ --data coco.yaml \ --weights yolov5s.pt \ --device 0,1 ``` 注意这里指定了两个 GPU (即 `--nproc_per_node=2`) ,以及选择了本地主机作为主控地址加上任意未被占用的端口号比如 29500 来完成跨进程间的同步通讯操作。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值