这是习题和答案的下载地址,全网最便宜,只要一积分哦~~~
https://download.csdn.net/download/wukongakk/10602657
这是我总结的网课里有关神经网络的笔记,不要积分的~~~
https://blog.csdn.net/WukongAKK/article/details/81746916
Part2
0.综述
这里用神经网络对手写字体进行预测,其中的参数(权重)矩阵是已经算好的,(对于计算参数矩阵的联系,放到了第四次作 业),最后的结果表示神经网络预测的准确度为97.5%,明显高于part1的逻辑回归。
1.脚本
%% Machine Learning Online Class - Exercise 3 | Part 2: Neural Networks
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% lrCostFunction.m (logistic regression cost function)
% oneVsAll.m
% predictOneVsAll.m
% predict.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
%
%% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this exercise
input_layer_size = 400; % 20x20 Input Images of Digits
hidden_layer_size = 25; % 25 hidden units
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10)
%% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
%
% Load Training Data
fprintf('Loading and Visualizing Data ...\n')
load('ex3data1.mat');
m = size(X, 1);
% Randomly select 100 data points to display
sel = randperm(size(X, 1));
sel = sel(1:100);
displayData(X(sel, :));
fprintf('Program paused. Press enter to continue.\n');
pause;
%% ================ Part 2: Loading Pameters ================
% In this part of the exercise, we load some pre-initialized
% neural network parameters.
fprintf('\nLoading Saved Neural Network Parameters ...\n')
% Load the weights into variables Theta1 and Theta2
load('ex3weights.mat');
%% ================= Part 3: Implement Predict =================
% After training the neural network, we would like to use it to predict
% the labels. You will now implement the "predict" function to use the
% neural network to predict the labels of the training set. This lets
% you compute the training set accuracy.
pred = predict(Theta1, Theta2, X);
fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);
fprintf('Program paused. Press enter to continue.\n');
pause;
% To give you an idea of the network's output, you can also run
% through the examples one at the a time to see what it is predicting.
% Randomly permute examples
rp = randperm(m);
for i = 1:m
% Display
fprintf('\nDisplaying Example Image\n');
displayData(X(rp(i), :));
pred = predict(Theta1, Theta2, X(rp(i),:));
fprintf('\nNeural Network Prediction: %d (digit %d)\n', pred, mod(pred, 10));
% Pause
fprintf('Program paused. Press enter to continue.\n');
pause;
end
2.Loading and Visualizing Data
这个和part1的展示数据部分是一样的,这里不再赘述。
3.Loading Pameters
加载数据,为参数(权重)矩阵赋值。
4.Implement Predict
进行预测
function p = predict(Theta1, Theta2, X)
%PREDICT Predict the label of an input given a trained neural network
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
% trained weights of a neural network (Theta1, Theta2)
% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);
% You need to return the following variables correctly
p = zeros(size(X, 1), 1);
% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned neural network. You should set p to a
% vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
% function can also return the index of the max element, for more
% information see 'help max'. If your examples are in rows, then, you
% can use max(A, [], 2) to obtain the max for each row.
%
% Add ones to the X data matrix -jin
X = [ones(m, 1) X];
a2 = sigmoid(X * Theta1'); % 第二层激活函数输出
a2 = [ones(m, 1) a2]; % 第二层加入b
a3 = sigmoid(a2 * Theta2');
[aa,p] = max(a3,[],2); % 返回每行最大值的索引位置,也就是预测的数字,aa储存行列极值, p储存极值的下标。
% =========================================================================
end