基于CKKS的非交互式安全Transformer推理实现

Secure Transformer Inference Made Non-interactive

本文介绍了如何使用CKKS来计算transformer推理的每个部分。同时给出了一系列优化算法。主要涉及到的计算算法有以下几种: 密文的压缩与分解技术、SIMD槽折叠技术、Sgn()、QuickSum、QuickMax、密文-明文矩阵相乘、密文-密文矩阵相乘法、Softmax算法、归一化、GELU函数、Argmax函数等等。其中密文的压缩与分解技术,和SIMD槽折叠技术是本文的核心创新算法。

Abstract

随着ChatGPT的普及,安全transformer推理已经成为一个突出了研究主题。已有的解决方法通常是交互式的,涉及到客户端和服务端之间大量的通信负载和交互轮次。

本文提出NEXUS,这是第一个用于安全transformer推理的非交互式协议,其中客户端仅需要提交一个加密输入,然后等待来自服务器的加密结果即可。NEXUS的核心是两个创新的技术:SIMD密文压缩和分解技术,以及SIMD槽折叠技术。此外,同24年的另外一个解决方案相比,本方法达到了2.8倍的加速,且减少了368.6倍的带宽消耗。

1 Introduction

Transformers,例如GPT和BERT,已经彻底改变了AI领域。Transformer擅长于广泛领域的应用,比如语言翻译,内容生成以及问题回答。然而这些应用总是涉及到敏感数据,从而导致越来越多地关于用户隐私的担忧。例,OpenAI开发的ChatGPT作为一种在线推理服务,以及为开发人员提供的远程API,其中使用者通过提交prompts或者消息可以很容易地访问这些服务。尽管这些方法是方便的,但是由于使用者提交的数据可能包含敏感信息,故而造成了严重的隐私风险。

Secure inference是一种两方密码协议,该协议使模型推理以如下方式处理运行,即服务器S不会了解到关于客户C提交的输入的任何信息,且C不会了解到关于S的模型的任何信息,仅仅能得到最终的推理结果。

该协议大多被设计于安全CNNs推 [ 2 , 27 , 30 , 36 ] [2,27,30,36] [2,27,30,36],最近的许多工作也支持基于Transformer的模型 [ 10 , 24 , 26 , 35 , 38 , 40 ] [10,24,26,35,38,40] [10,24,26,35,38,40]​,值得注意的是,这些安全Transformer模型大多都是交互式的,因此会导致巨大的通信开销和交互轮次,这里我们必须强调非交互式安全Transformer推理的重要性。

本文贡献:

本文中,我们提出了NEXUS,第一个secure transformer inference的非交互协议。通过NEXUS,C使用RNS-CKKS加密输入,S对FHE加密数据执行transformer。CKKS的SIMD技术被应用于批处理 N = 2 15 N=2^{15} N=215个数据,多项式近似可以用于处理非线性函数,比如GELU,softmax,层归一化和argmax。

NEXUS不需要对模型进行任何重训练与微调,且为了提高NEXUS的效率,我们提出了两种新颖的且基础的技术。

  • SIMD密文压缩与分解:该技术可以将2N个SIMD密文压缩为一个密文,然后可以使用4N个密文—明文乘法和替换将其解压回来。该技术可以大大减少客户端和服务器之间传输的密文数量,而不会为后续计算带来任何额外的开销。

在这里插入图片描述

  • SIMD槽折叠:在所有SIMD槽中计算关联函数f(),例如sum和max。结果值会自动的填充SIMD密文的槽,允许将其应用于原始密文的每个槽。

本文贡献总结如下:

  • secure transformer inference的第一个非交互协议
  • 用于密文打包的SIMD密文压缩与分解技术
  • SIMD槽折叠技术,以高效操作SIMD密文的槽
  • 综合的实现与评估

2 Preliminaries

符号系统描述如下:

NotationDescriptionNotationDescription
CclientSserver
E ( ∗ ) E(*) E()encryption π ( ∗ ) \pi(*) π()encoding
E n c ( ∗ ) Enc(*) Enc()encoding+encryption a ~ \tilde{a} a~FHE ciphertext
R o t L ( ∗ ) / R o t R ( ∗ ) RotL(*)/RotR(*) RotL()/RotR()左旋转和右旋转 S u b s ( ∗ ) Subs(*) Subs()替换操作
S g n ( ∗ ) Sgn(*) Sgn()sign操作 L L L乘法深度
N ′ N' NCKKS的环维数 N N N N = N ′ / 2 N=N'/2 N=N/2
A A A输入矩阵 W W W权重矩阵

2.1 安全推理和威胁模型

安全推理是一个两方密码学协议,其可以在C和S之间进行模型推理,与此同时还可以保护两个参与方输入隐私。它的正式定义如下:

Definition 1:

针对两方参与者,其中 S S S持有模型 M M M,且 C C C持有输入 A A A的协议 Π \Pi Π是安全推理协议,当且仅当以下条件满足时:

(1) 正确性: 该协议的最终输出是正确的推理结果 M ( A ) M(A) M(A)

(2) 安全性:

V i e w C Π ≈ c S i m C ( A , o u t ) View^{\Pi}_C\approx_c Sim_C(A,out) ViewCΠcSimC(A,out),其中 V i e w C Π View^{\Pi}_C ViewCΠ表示协议 Π \Pi Π执行期间 C C C的视角, o u t out out表示推理的结果。

V i e w S Π ≈ S S i m S ( M ) View^{\Pi}_S\approx_S Sim_S(M) ViewSΠSSimS(M),其中 V i e w S Π View^{\Pi}_S ViewSΠ表示协议 Π \Pi Π执行期间 S S S​的视角。

S i m ∗ Sim_* Sim可以理解为理想状态下希望实体 ∗ * 可以得到的信息。

假设 C C C S S S为半诚实对手,其在遵守协议规范的同时也尽可能的在执行过程中手机额外的信息。且假设对手在计算上是有限的。

2.2 Transformer

这里简单介绍一下Transformerd。

图1是transformer的结构与工作流程。它将一个表示为矩阵的嵌入传递给注意层和前馈神经网络,最后根据最终对数最大值输出一个选择向量,且,LayerNorm层被应用于每个块之后。

在这里插入图片描述

transformer的结构和工作流程
Attention:

使用三个矩阵( W Q ∈ R n × k , W K ∈ R n × k , W V ∈ R n × k W_Q\in\mathbb{R}^{n\times k},W_K\in\mathbb{R}^{n\times k},W_V\in\mathbb{R}^{n\times k} WQRn×k,WKRn×k,WVRn×k)乘嵌入矩阵 A ∈ R m × n A\in \mathbb{R}^{m\times n} ARm×n,生成一个query矩阵 Q = A ⋅ W Q Q = A·W_Q Q=AWQ,一个key矩阵 K = A ⋅ W K K=A·W_K K=AWK和一个value矩阵 V = A ⋅ W V V=A·W_V V=AWV。即对于Attention层的单元,transformer会学习到三个权重矩阵。

attention可以被表示为:
A t t e n t i o n ( Q , K , V ) = S o f t m a x ( Q K T k ) ⋅ V Attention(Q,K,V) = Softmax({QK^T\over{\sqrt k}})·V Attention(Q,K,V)=Softmax(k QKT)V

Layer normalization

该层的输入为 a ∈ R n a\in \mathbb{R}^n aRn,均值和标准差分别为 μ \mu μ σ \sigma σ,则该层的输出 y ∈ R n y\in\mathbb{R}^n yRn可以表示为:
y i = γ ⋅ x i − μ σ + β y_i=\gamma·{x_i-\mu\over\sigma}+\beta yi=γσxiμ+β
其中, γ , β ∈ R \gamma,\beta\in\mathbb{R} γ,βR​是两个超参数。

Feed-forward

全连接前馈网络层包含两个线性变换以及一个GELU激活函数:
F e e d F o r w a r d ( X ) = G E L U ( X W 1 + b 1 ) ⋅ W 2 + b 2 FeedForward(X)=GELU(XW_1+b_1)·W_2+b_2 FeedForward(X)=GELU(XW1+b1)W2+b2
其中GELU函数计算如下:
G E L U ( x ) = 1 2 x ⋅ ( 1 + e r f ( x 2 ) ) GELU(x)={1\over 2}x·(1+erf({x\over \sqrt 2})) GELU(x)=21x(1+erf(2 x))
式中,高斯误差函数为 e r f ( x ) = 2 π ∫ 0 x e − t 2 d t erf(x)={2\over\sqrt{\pi}}\int_0^xe^{-t^2}dt erf(x)=π 20xet2dt​。由于其良好的曲率和非单调性,它被用作激活函数。

Argmax

根据最终对数最大值输出一个选择向量

可以看到,只要我们能够使用FHE实现各个层的计算,就可以实现一个安全Transformer。

2.3 Fully Homomorphic Encryption

FHE可以对加密数据执行任意操作,故FHE是使得我们构建非交互式安全transformer推理得主要工具。RNS-CKKS属于级全同态加密,其可以支持L级深度的乘法。RNS-CKKS的明文和密文均是多项式环 R Q = Z Q [ X ] / ( X N ′ + 1 ) R_Q=\Z_Q[X]/(X^{N'}+1) RQ=ZQ[X]/(XN+1)上的元素。其中 Q = Π i = 0 L q i Q=\Pi^L_{i=0}q_i Q=Πi=0Lqi,且 q i q_i qi​之间互素。若密文的级别变得太低,则可以运行自举操作来刷新密文到高的级别,以允许更多的计算。

简单地说,自举即利用自同构 R q 0 ≅ R q 0 × R q 1 × . . . × R q L R_{q_0}\cong R_{q_0}\times R_{q_1}\times ... \times R_{q_L} Rq0Rq0×Rq1×...×RqL,来将密文模从 q 0 q_0 q0提升到 q L q_L qL,以及对密文同态评估解密电路。若自举本身消耗K个级别,则刷新后的密文支持 L − K L-K LK个级深度的计算。

RNS-CKKS支持SIMD操作,其可以加密向量 a ∈ R N a\in \R^N aRN到一个密文中,且批处理这些加密元素,而不引入其他操作。为了以SIMD格式加密,首先使用编码算法 π ( ∗ ) \pi(*) π()将向量 a a a编码为一个 R Q R_Q RQ上的多项式,然后使用加密算法 E ( ∗ ) E(*) E()​加密该多项式。

在整篇文章中,我们使用 E ( ∗ ) E(*) E()表示加密多项式,使用 E n c ( ∗ ) Enc(*) Enc()表示以SIMD格式加密向量,即 E n c ( a ) = E ( π ( a ) ) Enc(a)=E(\pi(a)) Enc(a)=E(π(a)),其中 a a a是一个向量。


一个特殊的FHE操作:

c t ′ ← S u b s ( c t , k ) ct'\leftarrow Subs(ct,k) ctSubs(ct,k):替换操作,该操作以密文 c t = E ( p ( x ) ) ct=E(p(x)) ct=E(p(x))以及一个奇整数 k k k作为输入,然后得到新的密文 c t ′ = E ( p ( x k ) ) ct'=E(p(x^k)) ct=E(p(xk))​​​​。

这里的 S u b s ( c t , k ) Subs(ct,k) Subs(ct,k)应该是一种密钥交换操作,可以描述如下:

已知密文: c t = ( − a ( x ) s ( x ) + e ( x ) + p ( x ) , a ( x ) ) ct=(-a(x)s(x)+e(x)+p(x),a(x)) ct=(a(x)s(x)+e(x)+p(x),a(x))

将该密文进行自同构操作: κ k ( c t ) = ( − a ( x k ) s ( x k ) + e ( x k ) + p ( x k ) , a ( x k ) ) \kappa_k(ct)=(-a(x^k)s(x^k)+e(x^k)+p(x^k),a(x^k)) κk(ct)=(a(xk)s(xk)+e(xk)+p(xk),a(xk))

然后得到用户提供的交换密钥: k e y = ( − a ( x ) s ( x ) + e ( x ) + P ⋅ s ( x k ) , a ( x ) ) key = (-a(x)s(x)+e(x)+P·s(x^k),a(x)) key=(a(x)s(x)+e(x)+Ps(xk),a(x))

然后执行密钥交换操作: c t ′ = ( κ k ( c t ) [ 0 ] , 0 ) + ( ⌊ P − 1 ⋅ κ k ( c t ) [ 1 ] ⋅ k e y ⌉ ) ct'=(\kappa_k(ct)[0],0)+(\lfloor P^{-1}·\kappa_k(ct)[1]·key\rceil) ct=(κk(ct)[0],0)+(⌊P1κk(ct)[1]key⌉)

此时新的密文即 c t ′ = ( − a ( x ) s ( x ) + e ( x ) + p ( x k ) , a ( x ) ) ct'=(-a(x)s(x)+e(x)+p(x^k),a(x)) ct=(a(x)s(x)+e(x)+p(xk),a(x))

注意,这里的 a ( x ) , e ( x ) a(x),e(x) a(x),e(x)是变化的,也就是不同的密文中,这是不同的。


2.4 Homomorphic sign function

由于FHE仅支持线性函数,所以为了实现在FHE下对加密数据的比较,本文需要利用sign函数的多项式近似,即:
s i g n ( x ) = f d f ( g d g ( x ) ) = { − 1 ( − 1 ≤ x ≤ − 2 − α ) 0 ( x = 0 ) 1 ( 2 − α ≤ x ≤ 1 ) sign(x)=f^{d_f}(g^{d_g}(x))=\begin{cases} -1 &(-1\leq x \leq -2^{-\alpha}) \\ 0 &(x = 0) \\ 1 &(2^{-\alpha}\leq x \leq 1) \\ \end{cases} sign(x)=fdf(gdg(x))= 101(1x2α)(x=0)(2αx1)
其中, f ( ) , g ( ) f(),g() f(),g()为两个多项式, d f , d g d_f,d_g df,dg为这两个多项式重复的次数。注意,该多项式近似要求输入x取值范围为[-1,1]。因此,对任何输入 a ∈ [ a m i n , a m a x ] a\in [a_{min},a_{max}] a[amin,amax]都需要进行归一化处理:
x : = a / m a x { ∣ a m a x ∣ , ∣ a m i n ∣ } x := a/max\{|a_{max}|,|a_{min}|\} x:=a/max{amax,amin}
这里,我们使用Sgn()表示在SIMD密文上同时运行归一化与sign近似函数:
b ~ ← S g n ( a ~ ) : b i = f d f ( g d g ( a i m a x { ∣ a m a x ∣ , ∣ a m i n ∣ } ) )    ∀ i ∈ [ N ] \widetilde b\leftarrow Sgn(\widetilde a): b_i =f^{d_f}(g^{d_g}({a_i\over{max\{|a_{max}|,|a_{min}|\}}})) \ \ \forall i \in [N] b Sgn(a ):bi=fdf(gdg(max{amax,amin}ai))  i[N]

在本文的实现中,使用的是9次的 f ( ∗ ) f(*) f() g ( ∗ ) g(*) g(),且设计 α = 16 , d f = 2 , d g = 2 \alpha=16,d_f=2,d_g=2 α=16,df=2,dg=2​​,然后使用BSGS算法来评估多项式。

3 Basic design

本节介绍NEXUS的基础设计,即在不优化的情况下实现上述transformer的每一层计算,在之后的章节中会对本节的算法进行优化。

3.1 Attention

3.1.1 Matrix multiplication(ciphertext-plaintext)

在Attention层的第一个MatMul步骤,我们需要计算三个密文—明文矩阵乘法:
Q : = A ⋅ W Q ; K : = A ⋅ W K ; V : = A ⋅ W V ; Q:=A·W_Q;\\ K:=A·W_K;\\ V:=A·W_V; Q:=AWQ;K:=AWK;V:=AWV;

其中A是我们的输入, W Q , W K , W V W_Q,W_K,W_V WQ,WK,WV是三个给定矩阵,下面以 A ⋅ W Q A·W_Q AWQ为例来描述这个密文—明文矩阵乘法,该过程同样适用于 W K W_K WK W V W_V WV

给定矩阵 A ∈ R m × n A\in \mathbb{R}^{m\times n} ARm×n和矩阵 W Q ∈ R n × k W_Q\in \mathbb{R}^{n\times k} WQRn×k,计算矩阵 Q : = A ⋅ W Q Q:=A·W_Q Q:=AWQ

a i , j ∈ R a_{i,j}\in \mathbb{R} ai,jR表示矩阵A的第i行第j列的元素, w j ∈ R k w_j\in \mathbb{R}^k wjRk表示矩阵 W Q W_Q WQ的第j行的元素向量, q i ∈ R k q_i\in \mathbb{R}^k qiRk是矩阵 Q Q Q的第i行的元素向量,即:
q i = ∑ j ∈ [ n ] a i , j ⋅ w j q_i=\sum_{j\in [n]}a_{i,j}·w_j qi=j[n]ai,jwj
因此,上述过程可以描述为,C将A中的每个元素 a i , j a_{i,j} ai,j均单独加密为密文发送给S,然后S同态评估MatrixMul,一个演示的示例如下:

在这里插入图片描述

图2 SIMD-based matrix multiplication

在上述描述中,C需要发送 m × n m\times n m×n个密文给S,从某一方面来说,这种开销是比较大的,因此本文在第4节提出一种算法可以将如此类型的 m × n m\times n m×n个密文压缩为 m × n N ′ m\times n\over{N'} Nm×n个密文,即一个密文中存放 N ′ N' N个元素,随后S可以将压缩后的密文恢复为压缩前的密文形式。


3.1.2 Matrix multiplication(ciphertext-ciphertext)

经过上述步骤后,可以获得加密的 ( Q , K , V ) (Q,K,V) (Q,K,V),在Attention的第二个MatMul块,S需要计算 Q ⋅ K T Q·K^T QKT。很明显,现在Q的每一行和 K T K^T KT的每一列已经以SIMD的形式加密为 E n c ( q ) , E n c ( k T ) Enc(q) , Enc(k^T) Enc(q),Enc(kT)。如果S可以计算 E n c ( q ) Enc(q) Enc(q) E n c ( k T ) Enc(k^T) Enc(kT)的内积,则可以获得 Q ⋅ K T Q·K^T QKT的加密结果。

由于SIMD,S可以很容易的计算得到Enc(u),其中 u = [ u 0 , . . . , u k − 1 ] u=[u_0,...,u_{k-1}] u=[u0,...,uk1]是q和 k T k^T kT的元素级的乘法,现在为了计算内积,S仅仅需要在SIMD下计算 s : = ∑ i = 0 k − 1 u i s:=\sum_{i=0}^{k-1}u_i s:=i=0k1ui


为了计算这个和,我们可以通过k-1次的旋转及加和来计算,从而获得密文Enc([s,s,…,s]),但是本文提出了’QuickSum’算法,该算法仅仅需要logk次旋转就可达到这个目标。'QuickSum’算法在第5节介绍。


进一步,S将计算得到每一行的的m个密文组合到单一密文中,计算方法如下:
∑ i = 0 m − 1 ( E n c ( s i , s i , . . . , s i ) ⋅ b i ) \sum_{i=0}^{m-1}(Enc(s_i,s_i,...,s_i)·b_i) i=0m1(Enc(si,si,...,si)bi)
其中 b i b_i bi仅在第i个槽的位置是1,其余槽均为0。

易知,输出矩阵为 A ∈ R m × m A\in \mathbb{R}^{m\times m} ARm×m,其中A的每行向量以SIMD形式加密,将该结果作为Softmax的输入。

3.1.3 Softmax

Softmax函数需要被应用于A的每一行,该函数评估如下:
y i = e x p ( a i − a m a x ) ∑ j = 0 m − 1 e x p ( a j − a m a x ) (1) y_i={exp(a_i-a_{max})\over{\sum_{j=0}^{m-1}exp(a_j-a_{max})}}\tag{1} yi=j=0m1exp(ajamax)exp(aiamax)(1)
其中 a m a x = m a x ( a 0 , . . . , a m − 1 ) a_{max}=max(a_0,...,a_{m-1}) amax=max(a0,...,am1),从而确保指数函数的每个输入 ( a j − a m a x ) (a_j-a_{max}) (ajamax)​是非正数,保证稳定性。


本文提出了’QuickMax’算法,该算法以 E n c ( [ a 0 , . . . , a m − 1 ] ) Enc([a_0,...,a_{m-1}]) Enc([a0,...,am1])为输入,并输出 E n c ( [ a m a x , . . . , a m a x ] ) Enc([a_{max},...,a_{max}]) Enc([amax,...,amax])​,且,该算法仅需要logm-1次Sgn操作与logm次旋转操作。该算法描述在第5节。


给定 E n c ( [ a 0 , . . . , a m − 1 ] ) Enc([a_0,...,a_{m-1}]) Enc([a0,...,am1]) E n c ( [ a m a x , . . . , a m a x ] ) Enc([a_{max},...,a_{max}]) Enc([amax,...,amax])

S进行如下步骤计算:
E n c ( [ a 0 ′ , . . . , a m − 1 ′ ] ) = E n c ( [ a 0 , . . . , a m − 1 ] ) − E n c ( [ a m a x , . . . , a m a x ] ) Enc([a'_0,...,a'_{m-1}])=Enc([a_0,...,a_{m-1}])-Enc([a_{max},...,a_{max}]) Enc([a0,...,am1])=Enc([a0,...,am1])Enc([amax,...,amax])
然后根据如下公式计算指数函数,这里使用泰勒展开:
e x p ( x ) ≈ ( 1 + x 2 r ) 2 r , x ≤ 0 exp(x)\approx(1+{x\over{2^r}})^{2^r},x\leq 0 exp(x)(1+2rx)2r,x0
其中 r = 6 r=6 r=6,此时平均误差被限制在 1 0 − 5 10^{-5} 105,即S以SIMD格式计算指数函数:
E n c ( e 0 , . . . , e m − 1 ) = e x p ( E n c ( [ a 0 ′ , . . . , a m − 1 ′ ] ) ) Enc(e_0,...,e_{m-1})=exp(Enc([a'_0,...,a'_{m-1}])) Enc(e0,...,em1)=exp(Enc([a0,...,am1]))
很明显,这里 e j = e x p ( a j ′ ) e_j=exp(a'_j) ej=exp(aj)

接下来,S应用 Q u i c k S u m ( ∗ ) QuickSum(*) QuickSum()算法来获得 E n c ( [ ∑ j = 0 m − 1 e j , . . . , ∑ j = 0 m − 1 e j ] ) Enc([\sum^{m-1}_{j=0}e_j,...,\sum^{m-1}_{j=0}e_j]) Enc([j=0m1ej,...,j=0m1ej])​。

进一步的,S使用文献[21,24]中的Goldschmidt除法算法来计算:
E n c ( y 0 , . . . , y m − 1 ) = E n c ( e 0 , . . . , e m − 1 ) E n c ( [ ∑ j = 0 m − 1 e j , . . . , ∑ j = 0 m − 1 e j ] ) Enc(y_0,...,y_{m-1})={Enc(e_0,...,e_{m-1})\over Enc([\sum^{m-1}_{j=0}e_j,...,\sum^{m-1}_{j=0}e_j])} Enc(y0,...,ym1)=Enc([j=0m1ej,...,j=0m1ej])Enc(e0,...,em1)
Softmax算法的详细描述如算法1所示:

在这里插入图片描述

3.1.4 Matrix multiplication(ciphertext-ciphertext)

这里是Attention的最后一个MatMul块,该块的计算原理同3.1.2节完全一致。

3.2 Layer normalization

本文的归一化表示如下(但是不太清楚这个归一化使用的是什么计算公式):

在这里插入图片描述

3.3 Feed forward

前馈网络层涉及到两个矩阵乘法以及一个GELU。矩阵乘法如上文所述来计算。GELU可以使用下述分段多项式来近似,当输入 x ∈ [ − 60 , 60 ] x\in [-60,60] x[60,60],则可以确保误差在 1 0 − 3 10^{-3} 103内。
G E L U ( x ) = ∈ { 0 ( x ≤ − 4 ) P ( x ) = ∑ i = 0 i = 3 c i x i ( − 4 < x ≤ − 1.95 ) Q ( x ) = ∑ i = 0 i = 6 d i x i ( − 1.95 < x ≤ 3 ) x ( x > 3 ) GELU(x)=\in \begin{cases} 0 &(x\leq -4) \\ P(x)=\sum_{i=0}^{i=3}c_ix^i &(-4<x\leq -1.95) \\ Q(x)=\sum_{i=0}^{i=6}d_ix^i &(-1.95<x\leq 3) \\ x &(x>3) \end{cases} GELU(x)=∈ 0P(x)=i=0i=3cixiQ(x)=i=0i=6dixix(x4)(4<x1.95)(1.95<x3)(x>3)
首先,使用Sgn操作获得四个加密bit: b 0 , b 1 , b 2 , b 3 b_0,b_1,b_2,b_3 b0,b1,b2,b3,当且仅当输入x属于第i段时, b i = 1 b_i=1 bi=1,否则 b i = 0 b_i=0 bi=0,如此,GELU(x)函数可以表示为: G E L U ( x ) : = b 0 ⋅ 0 + b 1 ⋅ P ( x ) + b 2 ⋅ Q ( x ) + b 3 ⋅ x GELU(x):=b_0·0+b_1·P(x)+b_2·Q(x)+b_3·x GELU(x):=b00+b1P(x)+b2Q(x)+b3x​。

完整的Secure GELU算法可以表示如下:

在这里插入图片描述

3.4 Argmax

transformer最终的输出应该是一个选择向量 E n c ( [ b 0 , . . . , b m − 1 ] ) Enc([b_0,...,b_{m-1}]) Enc([b0,...,bm1]),其中 b i = 1   i f   a i = m a x ( a 0 , . . . , a m − 1 ) b_i=1 \ if \ a_i=max(a_0,...,a_{m-1}) bi=1 if ai=max(a0,...,am1),其他情况下 b i = 0 b_i=0 bi=0​。

因此,本文的Secure Argmax算法如下:

在这里插入图片描述

3.5 Placement of bootstrapping

由于bootstrapping操作是昂贵的,因此合理的放置bootstrapping的位置是至关重要的。

在这里插入图片描述

图4 Placement of bootstrapping for a BERT-base transformer

4. SIMD密文的压缩和分解

假设C想要发送N’个密文给S,且每个密文以SIMD方式加密N个相同的值,Enc([ a 0 , . . . , a 0 a_0,...,a_0 a0,...,a0]),…,Enc([ a N ′ − 1 , . . . , a N ′ − 1 a_{N'-1},...,a_{N'-1} aN1,...,aN1​​])。


SIMD密文的压缩算法

C将向量[ a 0 , a 1 , . . . , a N ′ − 1 a_0,a_1,...,a_{N'-1} a0,a1,...,aN1]的各个元素打包到一个多项式的系数中,即:
p ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a N ′ − 1 x N ′ − 1 p(x)=a_0+a_1x+a_2x^2+...+a_{N'-1}x^{N'-1} p(x)=a0+a1x+a2x2+...+aN1xN1
然后将该多项式加密 p ~ 0 = E ( p ( x ) ) \widetilde p_0=E(p(x)) p 0=E(p(x))发送给S。

然后S可以对密文 p ~ 0 \widetilde p_0 p 0分解从而得到压缩前 N ′ N' N个SIMD密文。


S分解密文 p ~ 0 \widetilde p_0 p 0过程如下:


SIMD密文的分解算法:

(1)执行 S u b s ( p ~ 0 , N ′ + 1 ) Subs(\widetilde p_0, N'+1) Subs(p 0,N+1)返回:
E ( a 0 + a 1 x N ′ + 1 + a 2 x ( N ′ + 1 ) 2 + . . . + a N ′ − 1 x ( N ′ + 1 ) N ′ − 1 ) = E ( a 0 + a 1 ( − x ) + a 2 ( − x ) 2 ) + . . . + a N ′ − 1 ( − x ) N ′ − 1 ) E(a_0+a_1x^{N'+1}+a_2x^{(N'+1)^2}+...+a_{N'-1}x^{(N'+1)^{N'-1}}) \\ =E(a_0+a_1(-x)+a_2(-x)^2)+...+a_{N'-1}(-x)^{N'-1}) E(a0+a1xN+1+a2x(N+1)2+...+aN1x(N+1)N1)=E(a0+a1(x)+a2(x)2)+...+aN1(x)N1)
注意, x N ′ + 1 ≡ 0    ( m o d    x N ′ + 1 ) x^{N'}+1 \equiv 0 \ \ (mod \ \ x^{N'} + 1) xN+10  (mod  xN+1),因此 x N ′ + 1 = x N ′ ∗ x = − x   ( m o d    x N ′ + 1 ) x^{N'+1} = x^{N'} * x = -x \ (mod \ \ x^{N'}+1) xN+1=xNx=x (mod  xN+1)​,这里的 N ’ N’ N也就是分圆环的次数。

(2)执行 p ~ 0 + S u b s ( p ~ 0 , N ′ + 1 ) \widetilde p_0+Subs(\widetilde p_0,N'+1) p 0+Subs(p 0,N+1)​操作,移除p(x)的所有奇数项。
a 0 + a 1 x + a 2 x 2 + . . . + a N ′ − 1 x N ′ + 1 + a 0 + a 1 ( − x ) + a 2 ( − x ) 2 ) + . . . + a N ′ − 1 ( − x ) N ′ − 1 = a 0 + 0 x + a 2 x 2 + . . . + a N ′ − 2 x N ′ − 2 + 0 x N ′ − 1 a_0+a_1x+a_2x^2+...+a_{N'-1}x^{N'+1} \\+ a_0+a_1(-x)+a_2(-x)^2)+...+a_{N'-1}(-x)^{N'-1}\\= a_0+0x+a_2x^2+...+a_{N'-2}x^{N'-2}+0x^{N'-1} a0+a1x+a2x2+...+aN1xN+1+a0+a1(x)+a2(x)2)+...+aN1(x)N1=a0+0x+a2x2+...+aN2xN2+0xN1

(3)通过 l o g N ′ log N' logN S u b s ( ) Subs() Subs()操作,S可以提取得到密文: E ( a 0 + 0 x 1 + 0 x 2 + . . . + 0 x N ′ − 1 ) E(a_0+0x^1+0x^2+...+0x^{N'-1}) E(a0+0x1+0x2+...+0xN1),实际上,这就是密文Enc([ a 0 , a 0 , . . . , a 0 a_0,a_0,...,a_0 a0,a0,...,a0])。完整的操作流程如下:

在这里插入图片描述

类似地,为了提取E( a 1 + 0 x 1 + . . . + 0 x N ′ − 1 a_1+0x^1+...+0x^{N'-1} a1+0x1+...+0xN1),S应该左旋明文多项式p(x)一个单位,通过乘以 x − 1 x^{-1} x1,然后再次执行上述的提取过程。通过执行 N ‘ N‘ N次该提取过程,S可以获得向量[ a 0 , a 1 , . . . , a N ′ − 1 a_0,a_1,...,a_{N'-1} a0,a1,...,aN1​]中每个元素的单独SIMD格式加密。

然而上述过程需要执行 ( N ′ ⋅ l o g N ′ ) (N'·logN') (NlogN) S u b s ( ) Subs() Subs()操作。对比之下,本文提出一种算法,可以实现相同的目标,但是仅需要 2 N ′ 2N' 2N S u b s ( ) Subs() Subs()操作。该算法可以简单地描述如下:

在这里插入图片描述


算法5是Secure Decompression的详细描述:

在这里插入图片描述

下面提供上述分解操作的理论证明:

Theorem 1:

仅有常数项的多项式的加密E( a s + 0 x 1 + . . . + 0 x N ′ − 1 a_s+0x^1+...+0x^{N'-1} as+0x1+...+0xN1)是向量[ a s , a s , . . . , a s a_s,a_s,...,a_s as,as,...,as]的加密Enc([ a s , a s , . . . , a s a_s,a_s,...,a_s as,as,...,as​])。

在这里插入图片描述


4.1 Application to matrix multiplication

压缩分解技术可以自然地应用于MatrixMul,此外,基于下面的观察结果,本文进一步优化了矩阵乘法,观察到在transformer推理过程中,对于不同输入的矩阵 A ∈ R m × n A\in \R^{m\times n} ARm×n需要乘以相同的矩阵 W ∈ R n × k W\in \R^{n\times k} WRn×k​。

A = [ a 0 , . . . , a n − 1 ] A = [a_0,...,a_{n-1}] A=[a0,...,an1],其中 a i ∈ R m a_i\in \R^m aiRm表示矩阵 A A A的第 i i i行。假设S和C需要生成t个响应词,即有t个输入矩阵:
A 0 = [ a 0 , 0 , a 0 , 1 , . . . , a 0 , n − 1 ] A 1 = [ a 1 , 0 , a 1 , 1 , . . . , a 1 , n − 1 ] . . . A 0 = [ a t − 1 , 0 , a t − 1 , 1 , . . . , a t − 1 , n − 1 ] A_0=[a_{0,0},a_{0,1},...,a_{0,n-1}] \\ A_1=[a_{1,0},a_{1,1},...,a_{1,n-1}] \\ ... \\ A_0=[a_{t-1,0},a_{t-1,1},...,a_{t-1,n-1}] A0=[a0,0,a0,1,...,a0,n1]A1=[a1,0,a1,1,...,a1,n1]...A0=[at1,0,at1,1,...,at1,n1]
a i ′ = [ a 0 , i a 1 , i . . . a t − 1 , i ] a'_i=\left[\begin{matrix} a_{0,i} \\ a_{1,i} \\ ... \\ a_{t-1,i} \end{matrix} \right] ai= a0,ia1,i...at1,i q j ′ : = ∑ i = 0 n − 1 a i ′ w i , j     ∀ j ∈ [ k ] q'_j:=\sum^{n-1}_{i=0}a'_iw_{i,j}\ \ \ \forall j\in [k] qj:=i=0n1aiwi,j   j[k],则有
Q ′ = q 0 ′ ∣ ∣ q 1 ′ ∣ ∣ . . . ∣ ∣ q k − 1 ′ = [ A 0 W A 1 W . . . A t − 1 W ] Q'=q'_0||q'_1||...||q'_{k-1}=\left[\begin{matrix} A_0W \\ A_1W \\ ... \\ A_{t-1}W \end{matrix} \right] Q=q0∣∣q1∣∣...∣∣qk1= A0WA1W...At1W


在这里插入图片描述


预计算阶段:

这里,我们引入一个预计算阶段,其中S使用上述提到的密文压缩技术,将压缩后的密文 ( E n c S ( [ w i , j , w i , j , . . . , w i . j ⏟ t × m ] )    ∀ i ∈ [ n ] , j ∈ [ k ] ) (Enc_S([\underbrace{w_{i,j},w_{i,j},...,w_{i.j}}_{t\times m}])\ \ \forall i \in [n],j\in [k]) (EncS([t×m wi,j,wi,j,...,wi.j])  i[n],j[k])发送给C。注意,该传输仅只发生一次,除非模型发生改变。接下来,C对压缩的密文执行分解技术,以获得 E n c S ( [ w i , j , w i , j , . . . , w i . j ⏟ t × m ] )    ∀ i ∈ [ n ] , j ∈ [ k ] Enc_S([\underbrace{w_{i,j},w_{i,j},...,w_{i.j}}_{t\times m}])\ \ \forall i \in [n],j\in [k] EncS([t×m wi,j,wi,j,...,wi.j])  i[n],j[k]。在预计算阶段C并没有关于输入的信息,采样 U ∈ R ( t m ) × n U\in \R^{(tm)\times n} UR(tm)×n,然后计算:
E n c S ( v j ) ← ∑ i = 0 n − 1 ( u i × E n c S ( [ w i , j , . . . , w i , j ] ) )     ∀ j ∈ [ k ] Enc_S(v_j)\leftarrow\sum^{n-1}_{i=0}(u_i\times Enc_S([w_{i,j},...,w_{i,j}]))\ \ \ \forall j\in[k] EncS(vj)i=0n1(ui×EncS([wi,j,...,wi,j]))   j[k]
其中 u i u_i ui是矩阵 U U U的第i列。接下来,C使用自己的密钥来加密 E n c S ( v j ) Enc_S(v_j) EncS(vj)以获得 E n c C ( E n c S ( v j ) ) Enc_C(Enc_S(v_j)) EncC(EncS(vj)),并将其发送给S。注意 E n c S ( E n c C ( v j ) ) = E n c C ( E n c S ( v j ) ) Enc_S(Enc_C(v_j))=Enc_C(Enc_S(v_j)) EncS(EncC(vj))=EncC(EncS(vj)),故S可以对其进行解密,从而获得 E n c C ( v j ) Enc_C(v_j) EncC(vj)。注意,这里的 v j v_j vj是矩阵 U ⋅ W U·W UW的第 j j j列。


切换不同用户加密密钥的过程计算如下:

给定 c t S = ( − a s S + m + e ) ct_S=(-as_S+m+e) ctS=(asS+m+e)

使用 s C s_C sC加密有 c t C , S = ( − a s S − a s C + m + e + e ′ , a ) ct_{C,S}=(-as_S-as_C+m+e+e',a) ctC,S=(asSasC+m+e+e,a)

使用 s S s_S sS解密有: c t C = ( − a s S − a s C + m + e + e ′ , a ) + ( a s S , 0 ) = ( − a s C + m + e + e ′ ) ct_C=(-as_S-as_C+m+e+e',a)+(as_S,0)=(-as_C+m+e+e') ctC=(asSasC+m+e+e,a)+(asS,0)=(asC+m+e+e).


在线处理阶段:

此时,C知道输入的信息 A ′ = a 0 ′ ∣ ∣ a 1 ′ ∣ ∣ . . . ∣ ∣ a n − 1 ′ A'=a'_0||a'_1||...||a'_{n-1} A=a0∣∣a1∣∣...∣∣an1,然后C将明文 ( A ′ − U ) (A'-U) (AU)发送给S,注意,由于S不知道U的值,故S也不清楚 A ′ A' A的值,然后S可以计算:
( A ′ − U ) ⋅ W + ( E n c C ( v 0 ) ∣ ∣ E n c C ( v 1 ) ∣ ∣ . . . ∣ ∣ E n c C ( v k − 1 ) ) = ( A ′ W − V ) + ( E n c C ( v 0 ) ∣ ∣ E n c C ( v 1 ) ∣ ∣ . . . ∣ ∣ E n c C ( v k − 1 ) ) = ( E n c C ( q 0 ′ ) ∣ ∣ E n c C ( q 1 ′ ) ∣ ∣ . . . ∣ ∣ E n c C ( q k − 1 ′ ) ) (A'-U)·W + (Enc_C(v_0)||Enc_C(v_1)||...||Enc_C(v_{k-1}))\\ =(A'W-V)+(Enc_C(v_0)||Enc_C(v_1)||...||Enc_C(v_{k-1})) \\ =(Enc_C(q'_0)||Enc_C(q'_1)||...||Enc_C(q'_{k-1})) (AU)W+(EncC(v0)∣∣EncC(v1)∣∣...∣∣EncC(vk1))=(AWV)+(EncC(v0)∣∣EncC(v1)∣∣...∣∣EncC(vk1))=(EncC(q0)∣∣EncC(q1)∣∣...∣∣EncC(qk1))
其中 q j ′ q'_j qj是矩阵 Q ′ Q' Q的第 j j j列。算法6描述了优化后的矩阵乘法细节:

在这里插入图片描述

可以注意到,只需要预计算的过程交互一次,此后C可以直接向S发送明文信息 A ′ − U A'-U AU,而不会泄露 A ′ A' A的信息。

5 SIMD槽折叠算法

回想矩阵Q,K,V的行向量是使用SIMD方式加密的。而上述介绍的一系列操作,如内积,Softmax,LayerNorm和Argmax等, 均涉及到利用所有槽元素计算函数 f ( ∗ ) f(*) f(),并将得到的结果放置到所有槽上。例如给定 E n c ( [ a 0 , . . . , a N − 1 ] ) Enc([a_0,...,a_{N-1}]) Enc([a0,...,aN1]),然后想要获得 E n c ( [ s , . . . , s ] ) Enc([s,...,s]) Enc([s,...,s]),其中 s = ∑ i = 0 N − 1 a i s=\sum^{N-1}_{i=0}a_i s=i=0N1ai,此时 f ( ∗ ) f(*) f()即求和函数。

本节提供了一种通用的解决方案,只要函数 f ( ∗ ) f(*) f()满足:
f ( f ( a 0 , a 1 ) , a 2 ) = f ( a 0 , f ( a 1 , a 2 ) ) f(f(a_0,a_1),a_2)=f(a_0,f(a_1,a_2)) f(f(a0,a1),a2)=f(a0,f(a1,a2))
算法7描述了槽折叠算法的细节:

在这里插入图片描述

这里是一个简单的例子,可以看到算法7的实现流程:

在这里插入图片描述

5.1 QuickSum

给定 [ a 0 , a 1 , . . . , a n − 1 , 0 , . . . , 0 ] [a_0,a_1,...,a_{n-1},0,...,0] [a0,a1,...,an1,0,...,0],为了获得 [ ∑ i = 0 N − 1 a i , . . . , ∑ i = 0 N − 1 a i , 0 , . . . , 0 ] [\sum^{N-1}_{i=0}a_i,...,\sum^{N-1}_{i=0}a_i,0,...,0] [i=0N1ai,...,i=0N1ai,0,...,0],可以将算法7的第5行替换为 s ~ ← s ~ + a ~ \tilde{s}\leftarrow\tilde{s}+\tilde{a} s~s~+a~

5.2 QuickMax

给定 [ a 0 , a 1 , . . . , a n − 1 , 0 , . . . , 0 ] [a_0,a_1,...,a_{n-1},0,...,0] [a0,a1,...,an1,0,...,0],为了获得 a m a x , . . . , a m a x , 0 , . . . , 0 a_{max},...,a_{max},0,...,0 amax,...,amax,0,...,0,其中 a m a x = m a x ( a 0 , a 1 , . . . , a n − 1 ) a_{max}=max(a_0,a_1,...,a_{n-1}) amax=max(a0,a1,...,an1),很明显 m a x ( a , b ) max(a,b) max(a,b)可以表示为:
m a x ( a , b ) = a + b + ( a − b ) ⋅ S g n ( a − b ) 2 max(a,b)={a+b+(a-b)·Sgn(a-b)\over 2} max(a,b)=2a+b+(ab)Sgn(ab)
因此可以将算法7的第5行替换为:
s ~ ← 0.5 ⊗ ( a ~ ⊕ s ~ ⊕ ( a ~ ⊖ s ~ ) ⊗ S g n ( a ~ ⊖ s ~ ) ) \tilde{s}\leftarrow 0.5\otimes(\tilde{a}\oplus\tilde{s}\oplus(\tilde{a}\ominus\tilde{s})\otimes Sgn(\tilde{a}\ominus\tilde{s})) s~0.5(a~s~(a~s~)Sgn(a~s~))

6. Conclusion

本文提出了NEXUS系统,可以说是第一个不需要客户端和服务器进行交互的安全transformer推理协议。本文提出了适用于RNS-CKKS的一系列新协议,以使得服务器可以高效且精确的在加密数据上计算transformer的每一层。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值