d2l-ai深度学习日记(五)-卷积神经⽹络

 前言:
这个博客《d2l-ai深度学习日记》将记录我在深度学习领域的学习与探索,特别是基于《动手学深度学习》这本经典教材的学习过程。在这个过程中,我不仅希望总结所学,还希望通过分享心得,与志同道合的朋友一起交流成长。这不仅是对知识的沉淀,也是我备战研究生考试、追逐学术进阶之路的一部分。

过去学习日志:

d2l-ai深度学习日记(四)-深度学习计算-CSDN博客

d2l-ai深度学习日记(三)-多层感知机-CSDN博客

d2l-ai深度学习日记(二)-线性神经网络-CSDN博客

d2l-ai深度学习日记(一)-线性神经网络-CSDN博客

目录

一.图像卷积

1.互相关运算

2.卷积层

3.图像中⽬标的边缘检测

4.学习卷积核

二.填充和步幅

1.填充

2.步幅

三.多输⼊多输出通道

1.多输⼊通道

2. 多输出通道

四.汇聚层(池化层)

1.最⼤汇聚层和平均汇聚层

2.填充和步幅

3.多个通道

五.卷积神经⽹络(LeNet)

1.LeNet网络结构

2.模型训练

六.总结


一.图像卷积

        对于卷积的严格数学定义,这里不多讲,主要从代码方面来理解,图像卷积,以及卷积层是如何实现的.

1.互相关运算

严格来说,卷积层是个错误的叫法,因为它所表达的运算其实是互相关运算(cross-correlation),⽽不是卷 积运算。

先通过二维互相关运算来理解互相关运算

在 图中,输⼊ 是⾼度为3、宽度为3的⼆维张量(即形状为3 × 3)。卷积核的⾼度和宽度都是2,⽽卷积核窗⼝(或卷积窗⼝) 的形状由内核的⾼度和宽度决定(即2 × 2)

在⼆维互相关运算中,卷积窗⼝从输⼊张量的左上⻆开始,从左到右、从上到下滑动。当卷积窗⼝滑动到新 ⼀个位置时,包含在该窗⼝中的部分张量与卷积核张量进⾏按元素相乘,得到的张量再求和得到⼀个单⼀的 标量值,由此我们得出了这⼀位置的输出张量值。在如上例⼦中,输出张量的四个元素由⼆维互相关运算得 到,这个输出⾼度为2、宽度为2,如下所⽰:
0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

定义二维互相关运算:

def corr2d(X, K): #@save
# """计算⼆维互相关运算"""
    h, w = K.shape 
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) 
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

调用:

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) 
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

输出:

tensor([[19., 25.],
        [37., 43.]])

和上图所示结果一样

2.卷积层

基于上⾯定义的corr2d函数实现⼆维卷积层。在__init__构造函数中,将weight和bias声明为两个模型 参数。前向传播函数调⽤corr2d函数并添加偏置:

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size)) 
        self.bias = nn.Parameter(torch.zeros(1))
def forward(self, x):
    return corr2d(x, self.weight) + self.bias

3.图像中⽬标的边缘检测

首先构造一个模拟图形的矩阵:

X = torch.ones((6, 8)) 
X[:, 2:6] = 0
X

输出:

tensor([[1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.]])

这里构造了⼀个6 × 8像素的⿊⽩图像。中间四列为⿊⾊(0),其余像素为⽩⾊(1)

接下来,我们构造⼀个⾼度为1、宽度为2的卷积核K。当进⾏互相关运算时,如果⽔平相邻的两元素相同,则 输出为零,否则输出为⾮零。

K = torch.tensor([[1.0, -1.0]])

现在,我们对参数X(输⼊)和K(卷积核)执⾏互相关运算。如下所⽰,输出Y中的1代表从⽩⾊到⿊⾊的边 缘,-1代表从⿊⾊到⽩⾊的边缘,其他情况的输出为0。

Y = corr2d(X, K) 
Y

输出:

tensor([[1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.],
        [1., 1., 0., 0., 0., 0., 1., 1.]])

4.学习卷积核

构造⼀个卷积层,进行一次简单的训练来进行理解

# 构造⼀个⼆维卷积层,它具有1个输出通道和形状为(1,2)的卷积核 
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)
# 这个⼆维卷积层使⽤四维输⼊和输出格式(批量⼤⼩、通道、⾼度、宽度), # 其中批量⼤⼩和通道数都为1
X = X.reshape((1, 1, 6, 8)) 
Y = Y.reshape((1, 1, 6, 7)) 
lr = 3e-2 # 学习率
for i in range(10):
    Y_hat = conv2d(X)
    l = (Y_hat - Y) ** 2 
    conv2d.zero_grad() 
    l.sum().backward() # 迭代卷积核
    conv2d.weight.data[:] -= lr * conv2d.weight.grad 
    if (i + 1) % 2 == 0:
        print(f'epoch {i+1}, loss {l.sum():.3f}')

这里构造了一个二维的卷积层,并且用其卷积核初始化为随机张量.

损失函数是Y与卷积层输出的平⽅误差,然后计算梯度 来更新卷积核.

输出结果如下:

epoch 2, loss 8.123
epoch 4, loss 2.708
epoch 6, loss 1.005
epoch 8, loss 0.394
epoch 10, loss 0.159

在10次迭代之后,误差已经降到⾜够低。现在我们来看看我们所学的卷积核的权重张量:

conv2d.weight.data.reshape((1, 2))

输出:

tensor([[ 1.0325, -0.9508]])

这里的卷积核和我们上面定义的

K = torch.tensor([[1.0, -1.0]])

特别相似.原因是寻找⿊⽩边缘[1, -1]的边缘检测器是最佳的

二.填充和步幅

1.填充

在上一章中,可以看到卷积层输入3×3,但是输出只有2×2,这会导致神经网络层越来越小,为了使得神经网络层数不变,所以提出了一种方法"填充"来扩大卷积层的输出

torch.Size([8, 8])

填充(padding):在输⼊图像的边界填充元素(通常填充元素是0)。例如,在上图中, 我们将3 × 3输⼊填充到5 × 5,那么它的输出就增加为4 × 4。阴影部分是第⼀个输出元素以及⽤于输出计算 的输⼊和核张量元素:0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0。

实现填充:

# 为了⽅便起⻅,我们定义了⼀个计算卷积层的函数。 
# 此函数初始化卷积层权重,并对输⼊和输出提⾼和缩减相应的维数 
def comp_conv2d(conv2d, X):
# 这⾥的(1,1)表⽰批量⼤⼩和通道数都是1 
    X = X.reshape((1, 1) + X.shape) 
    Y = conv2d(X)
# 省略前两个维度:批量⼤⼩和通道 
    return Y.reshape(Y.shape[2:])
# 请注意,这⾥每边都填充了1⾏或1列,因此总共添加了2⾏或2列

调用:

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1) 
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape

输出:

torch.Size([8, 8])

在上面这个例子中,创建了⼀个⾼度和宽度为3的⼆维卷积层,并在所有侧边填充1个像素。给定⾼度 和宽度为8的输⼊,则输出的⾼度和宽度也是8。

2.步幅

在计算互相关时,卷积窗⼝从输⼊张量的左上⻆开始,向下、向右滑动。在前⾯的例⼦中,我们默认每次滑动 ⼀个元素。但是,有时候为了⾼效计算或是缩减采样次数,卷积窗⼝可以跳过中间位置,每次滑动多个元素。

我们将每次滑动元素的数量称为步幅(stride)

可以看到,为了计算输出中第⼀列的第⼆个元素和第⼀⾏的第⼆个元素,卷积窗⼝分别向下滑动三⾏和向右 滑动两列。

实现:

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2) 
comp_conv2d(conv2d, X).shape

输出:

torch.Size([4, 4])

这里,定义了步伐stride为2,故使得给定⾼度 和宽度为8的输⼊,输出的⾼度和宽度都为4

三.多输⼊多输出通道

1.多输⼊通道

当多输入的时候,单输出的时候,分别将每个部分卷积层和卷积核按照相互关运算,再相加,就得到了输出的,如上图所示

实现:

def corr2d_multi_in(X, K):
    # 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在⼀起 
    return sum(d2l.corr2d(x, k) for x, k in zip(X, K))
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)

输出:

tensor([[ 56.,  72.],
        [104., 120.]])

2. 多输出通道

当卷积核多通道输入的时候,此时的互相关运算并不总是都想加,就形成了多输出

实现:
 

def corr2d_multi_in_out(X, K):
    # 迭代“K”的第0个维度,每次都对输⼊“X”执⾏互相关运算。 # 最后将所有结果都叠加在⼀起
    return torch.stack([corr2d_multi_in(X, k) for k in K], 0)

通过将核张量K与K+1(K中每个元素加1)和K+2连接起来,构造了⼀个具有3个输出通道的卷积核。

K = torch.stack((K, K + 1, K + 2), 0) 
K.shape

输出:

torch.Size([3, 2, 2, 2])

四.汇聚层(池化层)

与卷积层类似,汇聚层运算符由⼀个固定形状的窗⼝组成,该窗⼝根据其步幅⼤⼩在输⼊的所有区域上滑动, 为固定形状窗⼝(有时称为汇聚窗⼝)遍历的每个位置计算⼀个输出。然⽽,不同于卷积层中的输⼊与卷积 核之间的互相关计算,汇聚层不包含参数。

1.最⼤汇聚层和平均汇聚层

在汇聚窗口过程中,取窗⼝中所有元素的 最⼤值,称为最大汇聚层

上图中中的输出张量的⾼度为2,宽度为2。这四个元素为每个汇聚窗⼝中的最⼤值:
max(0, 1, 3, 4) = 4,

max(1, 2, 4, 5) = 5,

max(3, 4, 6, 7) = 7,

max(4, 5, 7, 8) = 8.

在汇聚窗口过程中,取窗⼝中所有元素的平均值,称为平均汇聚层

实现:

def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) 
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max() 
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

调用:

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]) 
pool2d(X, (2, 2))

输出:

tensor([[4., 5.],
        [7., 8.]])

2.填充和步幅

与卷积层⼀样,汇聚层也可以改变输出形状.很好理解.

实现:

先定义一个矩阵:

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4)) 
X

矩阵:

tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

定义填充和步长:

pool2d = nn.MaxPool2d(3, padding=1, stride=2) 
pool2d(X)

输出:

tensor([[[[ 5.,  7.],
          [13., 15.]]]])

3.多个通道

在处理多通道输⼊数据时,汇聚层在每个输⼊通道上单独运算,⽽不是像卷积层⼀样在通道上对输⼊进⾏汇 总。这意味着汇聚层的输出通道数与输⼊通道数相同。

下⾯,在通道维度上连结张量X和X + 1,以构建具有2个通道的输⼊。

X = torch.cat((X, X + 1), 1) 
X

输出:

tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],

         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]]])

五.卷积神经⽹络(LeNet)

1.LeNet网络结构

总体来看,LeNet(LeNet-5)由两个部分组成:
• 卷积编码器:由两个卷积层组成;
• 全连接层密集块:由三个全连接层组成。

自己实现LeNet网络层:

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(), 
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(), 
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(), 
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

LeNet最后一层还有Gaussian函数,之前的激活函数中并没有提到,而且不影响我们理解网络,这里不多赘述

下⾯,我们将⼀个⼤⼩为28 × 28的单通道(⿊⽩)图像通过LeNet

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32) 
for layer in net:
    X = layer(X) 
    print(layer.__class__.__name__,'output shape: \t',X.shape)

输出:

Conv2d output shape: 	 torch.Size([1, 6, 28, 28])
Sigmoid output shape: 	 torch.Size([1, 6, 28, 28])
AvgPool2d output shape: 	 torch.Size([1, 6, 14, 14])
Conv2d output shape: 	 torch.Size([1, 16, 10, 10])
Sigmoid output shape: 	 torch.Size([1, 16, 10, 10])
AvgPool2d output shape: 	 torch.Size([1, 16, 5, 5])
Flatten output shape: 	 torch.Size([1, 400])
Linear output shape: 	 torch.Size([1, 120])
Sigmoid output shape: 	 torch.Size([1, 120])
Linear output shape: 	 torch.Size([1, 84])
Sigmoid output shape: 	 torch.Size([1, 84])
Linear output shape: 	 torch.Size([1, 10])

2.模型训练

使用Fashion-MNIST数据集来测试LeNet模型

加载数据集:

batch_size = 256 
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

创造精度函数:

def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
# """使⽤GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval() # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device 
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2) 
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍) 
                X = [x.to(device) for x in X]
            else:
                X = X.to(device) 
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel()) 
    return metric[0] / metric[1]

定义训练函数:

#@save 
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    # """⽤GPU训练模型(在第六章定义)""" 
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights) 
    print('training on', device) 
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr) 
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter) 
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train() 
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad() 
            X, y = X.to(device), y.to(device) 
            y_hat = net(X)
            l = loss(y_hat, y) 
            l.backward()
            optimizer.step() 
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0]) 
            timer.stop()
            train_l = metric[0] / metric[2] 
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,(train_l, train_acc, None)) 
        test_acc = evaluate_accuracy_gpu(net, test_iter) 
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')

这里的训练函数很简单,就是开始使用GPU进行训练,其他的和之前的并没有什么差异

训练并评估:

lr, num_epochs = 0.9, 10 
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出:

loss 0.467, train acc 0.823, test acc 0.820
29370.7 examples/sec on cuda:0

六.总结

        在这次学习中,主要是学习了卷积神经网络,池化层的一些相关概念,较为基础和简单,了解到了多层感知机以外的神经网络,并且知道了如何使用GPU进行训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值