谈谈膨胀卷积

膨胀卷积(Dilation Convolution)旨在保持感受野的同时避免下采样导致的信息丢失。通过在卷积核元素间插入空隙(dilation),可以实现等效的更大核尺寸,而参数量不变。在Caffe中,膨胀系数dilation影响卷积核尺寸,而在TensorFlow中对应的参数为rate。膨胀卷积的padding计算公式为pad = int((kernel_size + (dilation - 1) * (kernel_size - 1)) - 1) / 2。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

膨胀卷积(空洞卷积、Dilation Convolution/Atrous Convolution)的本质是为了

1.避免下采样而减少feature map的信息

2.感受野又不变


如图,(c)为膨胀卷积,考虑亮黄色的神经元,视野为1-5,在(b)的情况中,需要再加一层,才有一个神经元的视野有1-5的情况,但这样参数就变成了好几倍了。


caffe中的膨胀系数dilation可以理解为对    原始卷积尺寸-1   的倍数,以此求出膨胀后的卷积核尺寸

kernel_size_after_dilate - 1 =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值