L2补充完整推导

j点为h的计算点,j-1、j+1为q的计算点

连续方程:

\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0

\frac{\partial A}{\partial t} = B_{s}\frac{\partial h}{\partial t}

\frac{\partial h}{\partial t}\approx \frac{1}{\Delta t}\left ( h_{j}^{n+1}-h_{j}^{n} \right )

\frac{\partial Q}{\partial x}\approx \frac{1}{x_{j+1}-x_{j-1}}[\frac{1}{2}(Q_{j+1}^{n}+Q_{j+1}^{n+1}-\frac{1}{2}(Q_{j-1}^{n}+Q_{j-1}^{n+1})]

\frac{B_{s}}{\Delta t}(h_{j}^{n+1}-h_{j}^{n})+\frac{1}{x_{j+1}-x_{j-1}}\left [ \frac{1}{2}(Q_{j+1}^{n}+Q_{j+1}^{n+1})-\frac{1}{2}(Q_{j-1}^{n}+Q_{j-1}^{n+1}) \right ]=0

A_{j}^{*}Q_{j-1}^{n+1}+B_{j}^{*}h_{j1}^{n+1}+C_{j}^{*}Q_{j+1}^{n+1}=D_{j}^{*}

\left\{\begin{matrix} A_{j}^{*} =\frac{1}{4\Delta x}\\ B_{j}^{*} =\frac{B}{\Delta t}\\ C_{j}^{*} =-\frac{1}{4\Delta x}\\ D_{j}^{*} =-\frac{1}{4\Delta x}Q_{j+1}^{n}+\frac{B}{\Delta t}h_{j}^{n}+\frac{1}{4\Delta x}Q_{j-1}^{n} \end{matrix}\right.

运动方程:

\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+g\frac{\partial h}{\partial x}+g(S_{f}-S_{0})=0

\frac{\partial Q}{\partial t}+\frac{\partial }{\partial x}\left ( \frac{\partial aQ^{2}}{A} \right )+gA\frac{\partial h}{\partial x}+\frac{g\left | Q \right |Q}{C^{2}AR}=0(假设S0=0)

a=\frac{A}{Q_{2}}\int_{A}^{}u^{2}dA

\frac{\partial }{\partial x}(\frac{\partial aQ^{2}}{A}) =\frac{2aQ}{A}\frac{\partial Q}{\partial x}-\frac{aQ^{2}}{A^{2}}(B+h\frac{\partial B}{\partial h})\frac{\partial h}{\partial x}+\frac{Q^{2}}{A}\frac{\partial a}{\partial h}\frac{\partial h}{\partial x}

\frac{\partial Q}{\partial x}=-B_{s}\frac{\partial h}{\partial t}

\frac{\partial }{\partial x}(\frac{\partial aQ^{2}}{A}) =-\frac{2aQB_{s}}{A}\frac{\partial h}{\partial t}-\frac{aQ^{2}}{A^{2}}(B+h\frac{\partial B}{\partial h})\frac{\partial h}{\partial x}+\frac{Q^{2}}{A}\frac{\partial a}{\partial h}\frac{\partial h}{\partial x}

\frac{\partial Q}{\partial t}-\frac{2aQB_{s}}{A}\frac{\partial h}{\partial t}-[\frac{aQ^{2}}{A^{2}}(B+h\frac{\partial B}{\partial h})-\frac{Q^{2}}{A}\frac{\partial a}{\partial h}-gA]\frac{\partial h}{\partial x}+\frac{g\left | Q \right |Q}{C^{2}AR}=0

 \left\{\begin{matrix} D2=\frac{2aQB_s}{A}\\ D3 = \frac{aQ^{2}}{A^{2}}(B+h\frac{dB}{dh})-\frac{Q^2}{A}\frac{da}{dh}-gA\\ D4 = \frac{g}{C^{2}AR} =\frac{n^{2}g}{R^{4/3}A}\end{matrix}\right.

\frac{1}{\Delta t}(Q_{j-1}^{n+1}-Q_{j-1}^{n})-\frac{D2}{\Delta t}[\frac{x_{j}-x_{j-1}}{x_{j}-x_{j-2}}(h_{j-2}^{n+1}-h_{j-2}^{n})+\frac{x_{j-1}-x_{j-2}}{x_{j}-x_{j-2}}(h_{j}^{n+1}-h_{j}^{n})]-\frac{D3}{2(x_{j}-x_{j-2})}[(h_{j}^{n+1}+h_{j}^{n})-(h_{j-2}^{n+1}+h_{j-2}^{n})]+D4\left | Q_{j-1}^{n} \right |Q_{j-1}^{n+1}=0

A_{j-1}h_{j}^{n+1}+B_{j-1}Q_{j-1}^{n+1}+C_{j-1}h_{j-2}^{n+1}=D_{j-1}

\left\{\begin{matrix} A_{j-1}=-\frac{D2}{\Delta t}\frac{x_{j-1}-x_{j-2}}{x_{j}-x_{j-2}}-\frac{D3}{2(x_{j}-x_{j-2})}=-\frac{D2}{2\Delta t}-\frac{D3}{4\Delta x}\\ B_{j-1}=\frac{1}{\Delta t}+D4\left | Q_{j-1}^{n} \right |\\ C_{j-1}=-\frac{D2}{\Delta t}\frac{x_{j-1}-x_{j-2}}{x_{j}-x_{j-2}}+\frac{D3}{2(x_{j}-x_{j-2})}=-\frac{D2}{2\Delta t}+\frac{D3}{4\Delta x}\\ D_{j-1}=(-\frac{D2}{\Delta t}\frac{x_{j}-x_{j-1}}{x_{j}-x_{j-2}}+\frac{D3}{2(x_{j}-x_{j-2})})h_{j}^{n}+\frac{1}{\Delta t}Q_{j-1}^{n}+(-\frac{D2}{\Delta t}\frac{x_{j}-x_{j-1}}{x_{j}-x_{j-2}}-\frac{D3}{2(x_{j}-x_{j-2})})h_{j-2}^{n}\\ =(-\frac{D2}{2\Delta t}+\frac{D3}{4\Delta x})h_{j}^{n}+\frac{1}{\Delta t}Q_{j-1}^{n}+(-\frac{D2}{2\Delta t}-\frac{D3}{4\Delta x})h_{j-2}^{n} \end{matrix}\right.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值