前言
卷积层是在深度学习领域中非常常见、基础且重要的一种神经网络层。许多初学者可能会对卷积层的功能、其计算过程以及它在神经网络中的作用感到困惑。在这篇文章中,我将为大家详细介绍卷积层的基本概念和运作原理。
定义与功能
卷积层主要执行的是卷积操作,这是一种在神经网络中常用的操作,用于从输入数据中提取特征。在卷积层中,多个卷积核(也称为滤波器)在输入数据上滑动,并在每个位置上执行逐元素的乘积运算,随后将这些乘积相加以产生输出特征图中的一个元素。这个过程在数学上被描述为卷积运算,其目的是通过滤波器提取输入数据的局部特征。卷积操作步骤如下图(这里采用的是2*2的卷积核):
计算过程与输出尺寸
卷积层的输出尺寸受到多个因素的影响,包括卷积核的尺寸、步幅(stride)和填充(padding)。以一个640x640像素的图像通过一个3x3卷积核的卷积层为例来说明:
没有填充的情况
如果没有填充,且步幅为1,则输出尺寸可以通过以下公式计算:
o u t p u t = ( input_size − kernel_size stride ) + 1 output = \left( \frac{
{\text{input\_size} - \text{kernel\_size}}}{
{\text{stride}}} \right) + 1 output=(strideinput_size−kernel_size)+1
对于一个640x640的图像通过一个3x3的卷积核,步幅为1的情况下,输出尺寸为:
o u t p u t = ( 640 − 3 1 ) + 1 = 638 output = \left( \frac{ {640 - 3}}{1} \right) + 1 = 638 output=(