YOLO系列笔记(十)—— 基础:卷积层及其计算公式

本文详细介绍了卷积层在深度学习中的基本概念,包括卷积操作、输出尺寸的计算方法,以及填充和步幅的作用。同时,通过实例探讨了卷积层在YOLOv5等网络中的应用,特别强调了分支结构如何实现注意力机制以增强模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

卷积层是在深度学习领域中非常常见、基础且重要的一种神经网络层。许多初学者可能会对卷积层的功能、其计算过程以及它在神经网络中的作用感到困惑。在这篇文章中,我将为大家详细介绍卷积层的基本概念和运作原理。

定义与功能

卷积层主要执行的是卷积操作,这是一种在神经网络中常用的操作,用于从输入数据中提取特征。在卷积层中,多个卷积核(也称为滤波器)在输入数据上滑动,并在每个位置上执行逐元素的乘积运算,随后将这些乘积相加以产生输出特征图中的一个元素。这个过程在数学上被描述为卷积运算,其目的是通过滤波器提取输入数据的局部特征。卷积操作步骤如下图(这里采用的是2*2的卷积核):
在这里插入图片描述

计算过程与输出尺寸

卷积层的输出尺寸受到多个因素的影响,包括卷积核的尺寸、步幅(stride)和填充(padding)。以一个640x640像素的图像通过一个3x3卷积核的卷积层为例来说明:

没有填充的情况

如果没有填充,且步幅为1,则输出尺寸可以通过以下公式计算:
o u t p u t = ( input_size − kernel_size stride ) + 1 output = \left( \frac{ {\text{input\_size} - \text{kernel\_size}}}{ {\text{stride}}} \right) + 1 output=(strideinput_sizekernel_size)+1

对于一个640x640的图像通过一个3x3的卷积核,步幅为1的情况下,输出尺寸为:

o u t p u t = ( 640 − 3 1 ) + 1 = 638 output = \left( \frac{ {640 - 3}}{1} \right) + 1 = 638 output=(

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值