深度学习常见概念解释(二)—— 感受野:定义与计算公式

前言

笔者在学习深度网络的过程中,发现感受野(Receptive Field)这个概念经常出现,且该概念在深度网络特征提取层的设计中至关重要,但其作用不易通过名字直接理解。因此,本文收集了相关信息,对感受野进行定义和解释,并通过公式和实例帮助读者更好地理解这一概念。

感受野的定义

感受野(Receptive Field)是神经网络中一个基本且重要的概念,尤其是在卷积神经网络(CNNs)中。它表示输入空间中一个像素影响输出空间中特定神经元的区域大小。具体解释为:在卷积神经网络中,感受野是指在输入图像上,一个神经元(或特征图中的一个元素)可以看到或响应的区域大小。更具体地说,感受野是指输入图像的一个区域,这个区域中的像素会影响到卷积层或池化层中特定位置的输出值。

感受野的重要性

  1. 特征提取能力:感受野越大,神经元可以看到的输入区域就越大,能够捕捉到更多的全局特征。
  2. 卷积层设计:了解感受野的大小有助于设计合适的卷积层、池化层和步幅,以确保网络能够有效地捕捉到输入图像的关键信息。
  3. 网络深度与宽度:感受野的大小与网络的深度和每层的卷积核大小相关,影响网络的整体结构设计。

感受野的计算

计算公式

一般情况下,对于任意层的感受野大小,可以使用以下公式递归计算:

R n = R n − 1 + ( k n − 1 ) ⋅ s n − 1 R_n = R_{n-1} + (k_n - 1) \cdot s_{n-1} Rn=Rn1+(kn1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值