练习3-softmax分类(李沐函数简要解析)与d2l.train_ch3缺失的简单解决方式

环境为:练习1的环境
网址为:https://www.bilibili.com/video/BV1K64y1Q7wu/?spm_id_from=333.1007.top_right_bar_window_history.content.click

代码简要解析

导入模块
导入PyTorch
导入Torch中的nn模块
导入d2l中torch模块 并命名为d2l

import torch
from torch import nn
from d2l import torch as d2l

获取数据
从Fashion-MNIST中获取batch_size个数据 注意此处为28*28的像素图像 d2l.load_data_fashion_mnist(batch_size) 函数加载 Fashion-MNIST 数据集,并返回两个迭代器

batch_size=100
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

初始化模型和参数
Flatten()将输入为28*28的像素图像摊开成一组784长的数组 作为特征值 输入
nn.Linear() 为784输入 10输出的层
net.apply(init); 是将其中init函数作为所有可变参数的初始化方式 注意:m是层 既对每层m进行判断 符合条件对m的权重进行初始化
type(m) == nn.Linear 用于检查变量 m 是否属于 PyTorch 中的线性层(nn.Linear

net=nn.Sequential(nn.Flatten(),nn.Linear(784,10))
def init_weights(m):
    if type(m)==nn.Linear:
            nn.init.normal_(m.weight,std=0.01)
        
net.apply(init_weights)

初始化损失函数 这里为交叉熵损失函数

loss=nn.CrossEntropyLoss(reduction='none')

设定梯度下降算法
torch.optim.SGD()

trainer=torch.optim.SGD(net.parameters(),lr=0.1)

训练
这里的d2l是李沐老师自己写的,想要运行成功,理论上需要把d2l下载下来
网址:https://github.com/d2l-ai/d2l-zh

num_epochs=10;
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

我所学习到的

获得Fashion-MNIST的数据

train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

对输入进行平铺处理 其本质是把每个像素点都当作特征值

nn.Flatten()

多层的权重初始化

net.apply(init_weights)

交叉熵损失函数

loss=nn.CrossEntropy()

d2l.train_ch3缺失的简单解决方式

1.到https://github.com/d2l-ai/d2l-zh,下载源码

在这里插入图片描述
2.将torch.py改名为util.py 然后放到同一目录下在这里插入图片描述

3.引用即可

import torch
from torch import nn
import util as d2l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值