一、极限与连续

本文详细阐述了极限的定义,包括单侧极限和分段函数的特殊情况。接着讨论了极限的一般性质,如唯一性、局部有界性和局部保号性。文章还涉及极限的运算性质,夹逼定理以及无穷小的概念和性质。同时,分析了连续与间断,以及连续函数的运算法则。最后提到了上连续函数的性质,如有界性和介值定理。
摘要由CSDN通过智能技术生成

参考文献

高昆轮 2019考研数学
张宇 1000题

说明

【数字+字母+数字】表示1000题的索引,如【2B4】表示第2章 B组 第4题
【例+数字】为讲义的例题

一、极限的定义

1.邻域的概念

2.极限的定义

单侧极限

需要分别求左右极限的情形:

  • 分段函数的分段点处
  • e ∞ e^{\infty} e
  • arctan ⁡ ∞ \arctan \infty arctan

二、极限的一般性质

1.唯一性

2.局部有界性

研究开区间有界,分别将左区间的右邻域和右区间的左邻域求极限,若都存在,则有界

3.局部保号性

在某点上取到极值,某点的邻域导数
填空题:题目的核心不一定在题目上,也可能在选项上。如选项中都出现极值,大概率是考导数。

三、极限的运算性质

∃ \exists :极限;连续;可导

∃ \exists ± \pm ± ∃ \exists = ∃ \exists
∃ \exists ± \pm ± ∃ \exists = 不定
∃ \exists × \times × ∃ \exists = 不定
∃ \exists × \times × ∃ \exists = 不定

【例4】先在选项中确认是哪两个的关系,然后找到它们之间的关系,然后按照上面的判断。

四、极限的存在性质

1.夹逼定理

题目类型:函数极限
描述:分子和分母都是变量(会动)
解决:分子累加,分母固定(前最大后最小)
1)固定分母
分 子 之 和 最 大 分 母 ≤ 夹 ≤ 分 子 之 和 最 小 分 母 \frac{分子之和}{最大分母} \le 夹 \le \frac{分子之和}{最小分母}
放缩
2)- 单调有界准则(它的在第三章有详细的描述)
单调性问题
1)数学归纳法
单调
有界
极限
给定 x 1 x_1 x1先单调,再有界,后极限;否则先有界,单调,极限。
注意:单调用k不用n
【例6】

五、无穷小

1.无穷小的定义

2.无穷小的比较

在这里插入图片描述

高阶无穷小:分母的阶数更高一些


直接给出函数 f ( x ) f(x) f(x)
同阶无穷小【B1、3】
高阶无穷小【A18】【B2、10】
k阶无穷小【B4、6、11、16、17】
等价无穷小【A17】【B5、12】

无直接给出函数 f ( x ) f(x) f(x)
【A10】【B7、14】


3.无穷小的性质

无穷小乘以有界仍是无穷小(单独考察在求极限,填空题求极限,抓大头【例7】)
ln ⁡ x α ≪ x β ≪ a x \ln x^\alpha \ll x^\beta \ll a^x lnxαxβax

4.极限与无穷小的关系

函数极限和数列极限

  • 求函数的极限
    求函数极限,重点要知道是 什 么 什 么 \frac{什么}{什么} ,然后选方法(等价代换,化简,洛必达等)
0 0 \frac{0}{0} 00 等价代换 洛必达 泰勒公式
∞ ∞ \frac{\infty}{\infty} 等价代换 分子分母同除最大量
0 ⋅ ∞ 0 \cdot \infty 0 化为 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} 对数、反三角作分子 ∞ \infty 变为0或0变为 ∞ \infty
∞ − ∞ \infty-\infty 通分(分式差) 有理化(根式差) 倒代换(没分母)化 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty}
0 0 , ∞ 0 0^0,\infty^0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值