参考文献
高昆轮 2019考研数学
张宇 1000题
说明
【数字+字母+数字】表示1000题的索引,如【2B4】表示第2章 B组 第4题
【例+数字】为讲义的例题
一、极限的定义
1.邻域的概念
2.极限的定义
单侧极限
需要分别求左右极限的情形:
- 分段函数的分段点处
- e ∞ e^{\infty} e∞
- arctan ∞ \arctan \infty arctan∞
二、极限的一般性质
1.唯一性
2.局部有界性
研究开区间有界,分别将左区间的右邻域和右区间的左邻域求极限,若都存在,则有界
3.局部保号性
在某点上取到极值,某点的邻域导数
填空题:题目的核心不一定在题目上,也可能在选项上。如选项中都出现极值,大概率是考导数。
三、极限的运算性质
∃ \exists ∃:极限;连续;可导
∃ \exists ∃ | ± \pm ± | 不 ∃ \exists ∃ | = | 不 ∃ \exists ∃ |
---|---|---|---|---|
不 ∃ \exists ∃ | ± \pm ± | 不 ∃ \exists ∃ | = | 不定 |
∃ \exists ∃ | × \times × | 不 ∃ \exists ∃ | = | 不定 |
不 ∃ \exists ∃ | × \times × | 不 ∃ \exists ∃ | = | 不定 |
【例4】先在选项中确认是哪两个的关系,然后找到它们之间的关系,然后按照上面的判断。
四、极限的存在性质
1.夹逼定理
题目类型:函数极限
描述:分子和分母都是变量(会动)
解决:分子累加,分母固定(前最大后最小)
1)固定分母
分 子 之 和 最 大 分 母 ≤ 夹 ≤ 分 子 之 和 最 小 分 母 \frac{分子之和}{最大分母} \le 夹 \le \frac{分子之和}{最小分母} 最大分母分子之和≤夹≤最小分母分子之和
放缩
2)- 单调有界准则(它的在第三章有详细的描述)
单调性问题
1)数学归纳法
单调
有界
极限
给定 x 1 x_1 x1先单调,再有界,后极限;否则先有界,单调,极限。
注意:
单调用k不用n
【例6】
五、无穷小
1.无穷小的定义
2.无穷小的比较
高阶无穷小:分母的阶数更高一些
直接给出函数
f ( x ) f(x) f(x)
同阶无穷小【B1、3】
高阶无穷小【A18】【B2、10】
k阶无穷小【B4、6、11、16、17】
等价无穷小【A17】【B5、12】
无直接给出函数
f ( x ) f(x) f(x)
【A10】【B7、14】
3.无穷小的性质
无穷小乘以有界仍是无穷小(单独考察在求极限,填空题求极限,抓大头【例7】)
ln x α ≪ x β ≪ a x \ln x^\alpha \ll x^\beta \ll a^x lnxα≪xβ≪ax
4.极限与无穷小的关系
函数极限和数列极限
求函数的极限
求函数极限,重点要知道是 什 么 什 么 \frac{什么}{什么} 什么什么,然后选方法(等价代换,化简,洛必达等)
0 0 \frac{0}{0} 00 | 等价代换 | 洛必达 | 泰勒公式 |
---|---|---|---|
∞ ∞ \frac{\infty}{\infty} ∞∞ | 等价代换 | 分子分母同除最大量 | |
0 ⋅ ∞ 0 \cdot \infty 0⋅∞ | 化为 0 0 \frac{0}{0} 00或 ∞ ∞ \frac{\infty}{\infty} ∞∞ | 对数、反三角作分子 | ( ∞ \infty ∞变为0或0变为 ∞ \infty ∞) |
∞ − ∞ \infty-\infty ∞−∞ | 通分(分式差) | 有理化(根式差) | 倒代换(没分母)化 0 0 \frac{0}{0} 00或 ∞ ∞ \frac{\infty}{\infty} ∞∞ |
0 0 , ∞ 0 0^0,\infty^0 |