特征值和特征多项式

本文探讨了数学中的特征值(eigenvalue)、特征向量(eigenvector)及其相关概念,如特征多项式(characteristic polynomial)和特征方程(characteristic equation)。这些概念在微分方程和线性代数中有重要应用,同时也涉及到一些翻译上的差异,如eigenfunction有时也被译为本征函数或固有函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上大学的时候就没搞明白这两个定义,不明白它们和特征有啥关系,后来发现是翻译的问题。

特征值是eigenvalue,特征向量是eigenvector,而求解特征值的特征多项式是characteristic polynomial。

微分方程里面的特征方程是characteristic equation。

还有特征函数,eigenfunction等等。有时候又翻译为本征函数,固有函数。

特征多项式最小多项式都是线性代数中的重要概念,尤其在线性变换以及矩阵理论中有广泛应用。 **特征多项式** 对于一个给定的$n \times n$方阵$A$,其特征多项式$p_A(\lambda)$被定义为如下行列式的值: $$p_A(\lambda) = det(A - \lambda I_n)$$ 这里$\lambda$是一个标量参数,而$I_n$表示$n\times n$单位矩阵。这个多项式是关于$\lambda$的一个次数不超过$n$的多项式,并且它的根即为矩阵$A$的特征值。 **最小多项式** 同样针对一个$n \times n$方阵$A$,存在一个唯一的首一(最高次项系数为1)非零多项式$m_A(x)$使得当以矩阵$A$代替$x$时得到的结果矩阵为零矩阵,也就是满足$m_A(A)=0$。此多项式称为矩阵$A$的最小多项式。它具有最低可能的次数并且可以整除任何其他使$f(A)=0$成立的多项式$f(x)$。 **两者的差异** - **唯一性**: 对于任意给定的矩阵,特征多项式总是存在的而且是唯一的;然而,最小多项式也是唯一的但通常比特征多项式更难求解。 - **次数**: 特征多项式的次数等于矩阵的阶数$n$,而最小多项式的次数小于或等于$n$。 - **性质**: 最小多项式能够揭示出有关矩阵结构的重要信息,比如幂零指数、Jordan块大小等特性,这些不一定能从特征多项式直接看出。 - **应用范围**: 虽然两者都用于研究线性算子或者矩阵属性,但是由于最小多项式的特殊性质,在某些情况下它可以提供更加紧凑有效的描述方式来分析系统行为。 综上所述,尽管这两个概念紧密相连,但在实际应用场景中它们各自扮演着不同的角色并提供了不同层次上的洞察力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值