为了证明矩阵多项式的特征值是其特征值多项式,我们首先定义一些基本概念:
定义
-
特征值:给定一个 n×n 矩阵 A,其特征值是满足特征方程:
的 λ。
-
矩阵多项式:设 p(x) 是一个矩阵多项式,定义为:
其中 a
是标量系数。
-
特征值多项式:矩阵 A 的特征值多项式定义为:
证明
我们需要证明,如果 λ 是矩阵 A 的特征值,则 p(λ) 是 p(A) 的特征值。
假设 λ 是特征值:根据定义,存在非零向量 v,使得:
计算 p(A)v: 将 v 代入矩阵多项式 p(A),得到:
利用特征值的性质,可以逐步展开:
代入 Av=λ:
由
可进而推出
所以:
整理得到:
令 ,则:
结论: 由此可知,p(λ)=μ 是矩阵 p(A) 的特征值。
因此,矩阵多项式的特征值是其特征值多项式。