证明:矩阵多项式的特征值是其特征值多项式

为了证明矩阵多项式的特征值是其特征值多项式,我们首先定义一些基本概念:

定义

  1. 特征值:给定一个 n×n 矩阵 A,其特征值是满足特征方程:

    \det(A - \lambda I) = 0

    的 λ。

  2. 矩阵多项式:设 p(x) 是一个矩阵多项式,定义为:

    p(A) = a_k A^k + a_{k-1} A^{k-1} + \ldots + a_1 A + a_0 I

    其中 aa_k, a_{k-1}, \ldots, a_0​ 是标量系数。

  3. 特征值多项式:矩阵 A 的特征值多项式定义为:

    p_A(\lambda) = \det(A - \lambda I)

证明

我们需要证明,如果 λ 是矩阵 A 的特征值,则 p(λ) 是 p(A) 的特征值。

假设 λ 是特征值:根据定义,存在非零向量 v,使得:

A \mathbf{v} = \lambda \mathbf{v}

计算 p(A)v: 将 v 代入矩阵多项式 p(A),得到:

p(A) \mathbf{v} = (a_k A^k + a_{k-1} A^{k-1} + \ldots + a_1 A + a_0 I) \mathbf{v}

利用特征值的性质,可以逐步展开:

p(A) \mathbf{v} = a_k A^k \mathbf{v} + a_{k-1} A^{k-1} \mathbf{v} + \ldots + a_1 A \mathbf{v} + a_0 I \mathbf{v}

代入 Av=λ:

A^2 \mathbf{v} =A\cdot A \mathbf{v} =A \lambda \mathbf{v} =\lambda A\mathbf{v} = \lambda \cdot \lambda\mathbf{v} = \lambda^2 \mathbf{v}

可进而推出A^k \mathbf{v} = \lambda^k \mathbf{v}, \quad A^{k-1} \mathbf{v} = \lambda^{k-1} \mathbf{v}, \ldots, A \mathbf{v} = \lambda \mathbf{v}

所以:

p(A) \mathbf{v} = a_k \lambda^k \mathbf{v} + a_{k-1} \lambda^{k-1} \mathbf{v} + \ldots + a_1 \lambda \mathbf{v} + a_0 \mathbf{v}

整理得到

p(A) \mathbf{v} = (a_k \lambda^k + a_{k-1} \lambda^{k-1} + \ldots + a_1 \lambda + a_0) \mathbf{v}

\mu = a_k \lambda^k + a_{k-1} \lambda^{k-1} + \ldots + a_1 \lambda + a_0​,则:

p(A) \mathbf{v} = \mu \mathbf{v}

结论: 由此可知,p(λ)=μ 是矩阵 p(A) 的特征值。

因此,矩阵多项式的特征值是其特征值多项式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值