【心法篇】如何写好 Prompt:Few-shots 技巧深度解析

什么是 Few-shots?
Few-shots 指在机器学习模型训练中,仅使用极少量(通常为 1-3 个)的标注样本来提升模型性能。其核心目标是通过少量样本让模型快速掌握任务特性,进而在新数据上表现优异。对于生成式大模型,这一技巧在写 Prompt 时也同样适用。

通过提供 1-3 个输入→输出的具体示例,Few-shots 技巧可以显著提高大模型生成结果的质量。这种方法可以帮助模型“学习”任务的格式、语气和内容期望,从而输出更符合需求的结果。

Few-shots 的原理是什么?
人类的认知依赖意义的理解,而 LLM(大语言模型)的运作依赖概率分布。在生成过程中,模型依据已提供的上下文确定下一个最可能的 Token。Few-shots 技巧通过“样本引导”,提供清晰的上下文模板,让模型更易预测正确答案。


如何使用 Few-shots?

在设计 Prompt 时,可以在结构化提示中加入一个专门的 Examples 区块,示范期望的输入与输出格式。以下是示例对比:

初始 Prompt(无 Few-shots)

[SYS]:  
你是一个优秀的翻译人员。你的任务是将汉字翻译成英文和日语,日语部分包括汉字和假名。不需要提供任何额外解释。  

输入: 邻居  
输出:  
Neighbor (English)  
隣人 (にんじん/Ninjin) (Japanese)  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值