文献阅读01 《WiFall: Device-Free Fall Detection by Wireless Networks》

文献阅读01 《WiFall: Device-Free Fall Detection by Wireless Networks》

检索关键字:Wireless, channel state information, fall detection, device-free, machine learning

发表期刊:IEEE TRANSACTIONS ON MOBILE COMPUTING(TCM),第16卷第2期,2017-02-01

作者:Yuxi Wang, Student Member, IEEE, Kaishun Wu, Member, IEEE, and Lionel M. Ni, Fellow, IEEE

原文链接

Abstract

  1. 文章使用 CSI(Channel State Information) 作为活动指示信号;
  2. WiFall可实现单人的跌倒检测。在文章所述的三种测试环境–客厅、实验室、宿舍中的平均检测准确率为90%,误报率为15%。使用随机森林算法也可以达到94%的准确率和13%的误报率。

1 INTRODUCE

文章主要贡献:

  • 文章探索了细粒度的 CSI 进行跌倒检测的可行性。利用时间稳定性和频率多样性设计了 WiFall ,一种无源无设备的跌倒检测系统。
  • 从非侵入式检测出发,使用单类 SVM 和随机森林算法对不同的人行为进行分类。

文章结构:在第2节中介绍 WiFall 的相关工作,在第3节中介绍背景知识。在第4节中介绍 WiFall 系统的详细设计,第5节介绍Wi Fall系统的评估方法,第6节给出评估结果,在第7节给出关于 WiFall 的结论和讨论。

2,3 章这里略过,有需请自行阅读

4 WIFALL SYSTEM

本章首先介绍 WiFall 的系统架构,再对系统中的主要模块进行详细说明

4.1 System Overview(系统概要)

  1. 如图.2 所示 WiFall 系统由感知(Sensing)、学习(Learning) 和报警(Alerting) 3个主要阶段组成。

    在这里插入图片描述

  2. 感知阶段。AP 端发射信号,STA端在同一 interest 区域采集 CSI 信息。这里原文描述是 in the same area of interest 我没理解这个 interest area 是什么意思,可能就是 LOS([LOS介绍](视距无线传输 (Line of Sight,LOS)-CSDN博客)) 区域。

  3. 学习阶段。本阶段包含三个模块:数据处理、剖面构建、活动决策模型。作者从经过降噪和重构的 CSI 数据中提取 CSI 轮廓。在训练过程中收集的概要文件存储在概要文件数据库中,在测试过程中收集的概要文件通过应用两种机器算法进行活动决策。

  4. 报警阶段略过,有需请阅读原文。

4.2 Data Processing(数据处理)

4.2.1 数据重构

作者使用 CSI Tool 采集 CSI 信号,原始数据维度为:
N t x × N r x × 30 Ntx \times Nrx \times 30 Ntx×Nrx×30
三个维度分别为发射天线数,接受天线数,一对收发天线间通信信道上的30条子载波。一个 CSI 数据包包含 9 个 stream ,可以表示为:

在这里插入图片描述

CSIi,j 中,i 为 stream 编号,j 为子载波编号。文章使用 CSI 幅值信息进行活动分类,后文的 CSI 也都指幅值信息。

  1. 人体活动对 9 个 stream 的影响不同,而对 30 条子载波的影响相似,如图3,4所示:

    在这里插入图片描述

    所以作者尝试将不同 stream 的 30 条子载波分别聚合。聚合公式为:

    在这里插入图片描述

    f0 为中心频率。故聚合得到的每个时隙的 CSI 数据为一个 9 列的矩阵,如下所示:

    在这里插入图片描述

  2. 但是在多径丰富的环境中,聚合会部分地损失子载波的频率分集,即会损失部分特征,所以作者将 CSI 数据包重构为:

    在这里插入图片描述

    实际就是保留全部子载波,只是将编号相同的子载波置于相邻位置。重构后的数据为一个 270 列的矩阵,作者将这个 270 列的矩阵用于跌倒识别。而上述的 9 列矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值