文献阅读01 《WiFall: Device-Free Fall Detection by Wireless Networks》
检索关键字:Wireless, channel state information, fall detection, device-free, machine learning
发表期刊:IEEE TRANSACTIONS ON MOBILE COMPUTING(TCM),第16卷第2期,2017-02-01
作者:Yuxi Wang, Student Member, IEEE, Kaishun Wu, Member, IEEE, and Lionel M. Ni, Fellow, IEEE
Abstract
- 文章使用 CSI(Channel State Information) 作为活动指示信号;
- WiFall可实现单人的跌倒检测。在文章所述的三种测试环境–客厅、实验室、宿舍中的平均检测准确率为90%,误报率为15%。使用随机森林算法也可以达到94%的准确率和13%的误报率。
1 INTRODUCE
文章主要贡献:
- 文章探索了细粒度的 CSI 进行跌倒检测的可行性。利用时间稳定性和频率多样性设计了 WiFall ,一种无源无设备的跌倒检测系统。
- 从非侵入式检测出发,使用单类 SVM 和随机森林算法对不同的人行为进行分类。
文章结构:在第2节中介绍 WiFall 的相关工作,在第3节中介绍背景知识。在第4节中介绍 WiFall 系统的详细设计,第5节介绍Wi Fall系统的评估方法,第6节给出评估结果,在第7节给出关于 WiFall 的结论和讨论。
2,3 章这里略过,有需请自行阅读
4 WIFALL SYSTEM
本章首先介绍 WiFall 的系统架构,再对系统中的主要模块进行详细说明
4.1 System Overview(系统概要)
-
如图.2 所示 WiFall 系统由感知(Sensing)、学习(Learning) 和报警(Alerting) 3个主要阶段组成。
-
感知阶段。AP 端发射信号,STA端在同一 interest 区域采集 CSI 信息。这里原文描述是 in the same area of interest 我没理解这个 interest area 是什么意思,可能就是 LOS([LOS介绍](视距无线传输 (Line of Sight,LOS)-CSDN博客)) 区域。
-
学习阶段。本阶段包含三个模块:数据处理、剖面构建、活动决策模型。作者从经过降噪和重构的 CSI 数据中提取 CSI 轮廓。在训练过程中收集的概要文件存储在概要文件数据库中,在测试过程中收集的概要文件通过应用两种机器算法进行活动决策。
-
报警阶段略过,有需请阅读原文。
4.2 Data Processing(数据处理)
4.2.1 数据重构
作者使用 CSI Tool 采集 CSI 信号,原始数据维度为:
N t x × N r x × 30 Ntx \times Nrx \times 30 Ntx×Nrx×30
三个维度分别为发射天线数,接受天线数,一对收发天线间通信信道上的30条子载波。一个 CSI 数据包包含 9 个 stream ,可以表示为:
CSIi,j 中,i 为 stream 编号,j 为子载波编号。文章使用 CSI 幅值信息进行活动分类,后文的 CSI 也都指幅值信息。
-
人体活动对 9 个 stream 的影响不同,而对 30 条子载波的影响相似,如图3,4所示:
所以作者尝试将不同 stream 的 30 条子载波分别聚合。聚合公式为:
f0 为中心频率。故聚合得到的每个时隙的 CSI 数据为一个 9 列的矩阵,如下所示:
-
但是在多径丰富的环境中,聚合会部分地损失子载波的频率分集,即会损失部分特征,所以作者将 CSI 数据包重构为:
实际就是保留全部子载波,只是将编号相同的子载波置于相邻位置。重构后的数据为一个 270 列的矩阵,作者将这个 270 列的矩阵用于跌倒识别。而上述的 9 列矩阵