统计知识基础(三)常用构造估计量的两种方法——矩估计、最大似然估计

矩估计法

矩估计法的定义

矩估计法是用样本 k k k阶矩作为总体的 k k k阶矩的估计量,建立含待估计参数的方程,从而解出带估计参数。矩估计中,总体均值与方差的矩估计量的表达式不因不同的总体分布而异。通俗的讲就是:
例如,不论总体服从什么分布,总体期望 μ \mu μ,与方差 δ 2 \delta^2 δ2存在,则根据矩估计法,它们的估计量分别为 μ ^ = 1 n ∑ i = 1 n X i = X ˉ δ ^ 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = S n 2 \hat{\mu}=\frac{1}{n}\sum\limits_{i=1}^n{X_i}=\bar{X} \\\hat{\delta}^2=\frac{1}{n}\sum\limits_{i=1}^n{(X_i-\bar{X})^2}=S^2_n μ^=n1i=1nXi=Xˉδ^2=n1i=1n(XiXˉ)2=Sn2
1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = S n 2 \frac{1}{n-1}\sum\limits_{i=1}^n{(X_i-\bar{X})^2}=S^2_n n11i=1n(XiXˉ)2=Sn2时,是无偏矩估计。当然,矩估计不唯一。
一般地,用样本均值 X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\frac{1}{n}\sum\limits_{i=1}^n{X_i} Xˉ=n1i=1nXi作为总体的均值的矩估计。
用样本二阶中心距 B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 B_2=\frac{1}{n}\sum\limits_{i=1}^n{(X_i-\bar{X})^2} B2=n1i=1n(XiXˉ)2作为总体方差的的矩估计。

矩估计法的依据

X X X为连续型随机变量,其概率密度为 f ( x ; θ 1 , θ 2 , θ 3 , ⋯   , θ k ) f(x;\theta_1,\theta_2,\theta_3,\cdots,\theta_k) f(x;θ1,θ2,θ3,,θk),设 X X X为离散型随机变量,其分布律为 P { X = x } = p ( x ; θ 1 , θ 2 , θ 3 , ⋯   , θ k ) P\{X=x\}=p(x;\theta_1,\theta_2,\theta_3,\cdots,\theta_k) P{X=x}=p(x;θ1,θ2,θ3,,θk),其中 θ 1 , θ 2 , θ 3 , ⋯   , θ k \theta_1,\theta_2,\theta_3,\cdots,\theta_k θ1,θ2,θ3,,θk为待估参数, X 1 , X 2 , X 3 , ⋯   , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn来自 X X X的,假设总体 X X X的前 k k k阶矩且均为 θ 1 , θ 2 , θ 3 , ⋯   , θ k \theta_1,\theta_2,\theta_3,\cdots,\theta_k θ1,θ2,θ3,,θk的函数,即
μ l = E ( X l ) = ⎰ + ∞ − ∞ x l f ( x ; θ 2 , θ 3 , ⋯   , θ k ) d x ( X 为 连 续 型 变 量 ) μ l = E ( X l ) = ∑ x ∈ R X x l p ( x ; θ 1 , θ 2 , θ 3 , ⋯   , θ k ) ( X 为 离 散 型 变 量 ) \mu_l=E(X_l)=\lmoustache_{+\infty}^{-\infty}x^lf(x;\theta_2,\theta_3,\cdots,\theta_k)dx\quad(X为连续型变量) \\\quad \\\mu_l=E(X_l)=\sum\limits_{x\in R_X}{x^lp(x;\theta_1,\theta_2,\theta_3,\cdots,\theta_k)}\quad(X为离散型变量) μl=E(Xl)=+xlf(x;θ2,θ3,,θk)dx(X)μl=E(Xl)=xRXxlp(x;θ1,θ2,θ3,,θk)(X)
R X R_X RX x x x可能取值的范围, l = 1 , 2 , 3 , ⋯   , k l=1,2,3,\cdots,k l=1,2,3,,k,因为样本矩的连续函数依概率收敛于相应的总体矩的连续函数,样本矩 A l = 1 n ∑ i = 1 n X i l A_l=\frac{1}{n}\sum\limits_{i=1}^n{X_i^l} Al=n1i=1nXil依概率收敛于相应的总体矩 μ l \mu_l μl

矩估计的一般步骤

  1. μ l = A l , l = 1 , 2 , 3 , ⋯   , k \mu_l=A_l,l=1,2,3,\cdots,k μl=Al,l=1,2,3,,k,这是一个包含 k 个未知参数 θ 1 , θ 2 , θ 3 , ⋯   , θ k \theta_1,\theta_2,\theta_3,\cdots,\theta_k θ1,θ2,θ3,,θk的方程组;
  2. 解出其中的 θ 1 , θ 2 , θ 3 , ⋯   , θ k \theta_1,\theta_2,\theta_3,\cdots,\theta_k θ1,θ2,θ3,,θk
  3. 用方程组的解 θ ^ 1 , θ ^ 2 , θ ^ 3 , ⋯   , θ ^ k \hat{\theta}_1,\hat{\theta}_2,\hat{\theta}_3,\cdots,\hat{\theta}_k θ^1,θ^2,θ^3,,θ^k分别作为 θ 1 , θ 2 , θ 3 , ⋯   , θ k \theta_1,\theta_2,\theta_3,\cdots,\theta_k θ1,θ2,θ3,,θk的估计量。

例题

例1:设总体 X X X的概率密度函数为
f ( x , θ ) = 1 2 θ e − ∣ x ∣ θ , − ∞ &lt; x &lt; + ∞ , θ &gt; 0 f(x,\theta)=\frac{1}{2\theta}e^{-\frac{|x|}{\theta}},\quad -\infty&lt;x&lt;+\infty,\quad\theta&gt;0 f(x,θ)=2θ1eθx,<x<+,θ>0,求 θ \theta θ的矩估计量。
解: f ( x ; θ ) f(x;\theta) f(x;θ)中仅含有一个 θ \theta θ
E ( X ) = ⎰ − ∞ + ∞ x 1 2 θ e − ∣ x ∣ θ d x = 0 E(X)=\lmoustache_{-\infty}^{+\infty}{x\frac{1}{2\theta}e^{-\frac{|x|}{\theta}}}dx=0 E(X)=+x2θ1eθxdx=0
E ( X ) E(X) E(X)中不含有 θ \theta θ,因此无法解出 θ \theta θ的矩估计量。需继续求总体的二阶原点矩。
E ( X 2 ) = ⎰ − ∞ + ∞ x 2 1 2 θ e − ∣ x ∣ θ d x = 1 θ ⎰ 0 + ∞ x 2 e − x θ d x = θ 2 Γ ( 3 ) = 2 θ 2 \begin{aligned} E(X^2)&amp;=\lmoustache_{-\infty}^{+\infty}{x^2\frac{1}{2\theta}e^{-\frac{|x|}{\theta}}}dx\\ &amp;=\frac{1}{\theta}\lmoustache_0^{+\infty}x^2e^{-\frac{x}{\theta}}dx\\ &amp;=\theta^2\Gamma(3)\\ &amp;=2\theta^2\\ \end{aligned} E(X2)=+x22θ1eθxdx=θ10+x2eθxdx=θ2Γ(3)=2θ2
A 2 = 1 n ∑ i = 1 n X i 2 A_2=\frac{1}{n}\sum\limits_{i=1}^n{X^2_i} A2=n1i=1nXi2替换 E ( X 2 ) E(X^2) E(X2),则 A 2 = 1 n ∑ i = 1 n X i 2 = 2 θ 2 A_2=\frac{1}{n}\sum\limits_{i=1}^n{X^2_i}=2\theta^2 A2=n1i=1nXi2=2θ2,得出 θ \theta θ的矩估计量为
θ ^ = 1 2 1 n ∑ i = 1 n X i 2 = A 2 2 , θ &gt; 0 \hat{\theta}=\sqrt{\frac{1}{2}\frac{1}{n}\sum\limits_{i=1}^n{X^2_i}}=\sqrt{\frac{A_2}{2}} \quad,\quad \theta&gt;0 θ^=21n1i=1nXi2 =2A2 ,θ>0
例2
设总体 X X X的均值 μ \mu μ和方差 δ 2 \delta^2 δ2都存在,且有 δ &gt; 0 \delta&gt;0 δ>0,但 μ \mu μ δ 2 \delta^2 δ2均为未知,又设 X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn是一个样本,求 μ \mu μ δ 2 \delta^2 δ2的矩估计量。
解:
μ 1 = E ( X ) = μ μ 2 = E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = δ 2 + μ 2 \begin{aligned} \mu_1&amp;=E(X)=\mu\\ \mu_2&amp;=E(X^2)=D(X)+[E(X)]^2=\delta^2+\mu^2 \end{aligned} μ1μ2=E(X)=μ=E(X2)=D(X)+[E(X)]2=δ2+μ2

{ μ = A 1 δ 2 + μ 2 = A 2 \left\{ \begin{aligned} &amp;\mu=A_1\\ \\\quad &amp;\delta^2+\mu^2=A_2 \end{aligned} \right. μ=A1δ2+μ2=A2
解得
{ μ = μ 1 δ 2 = μ − μ 1 2 \left\{ \begin{aligned} &amp;\mu=\mu_1\\ \\\quad &amp;\delta^2=\mu-\mu_1^2 \end{aligned} \right. μ=μ1δ2=μμ12

μ ^ = A 1 = X ˉ δ ^ 2 = A 2 − A 1 2 = 1 n ∑ i = 1 n X i 2 − X ˉ = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 \begin{aligned} \hat{\mu}&amp;=A_1=\bar{X}\\ \hat{\delta}^2&amp;=A_2-A_1^2\\ &amp;=\frac{1}{n}\sum\limits_{i=1}^n{X^2_i}-\bar{X}\\ &amp;=\frac{1}{n}\sum\limits_{i=1}^n{(X_i-\bar{X})^2} \end{aligned} μ^δ^2=A1=Xˉ=A2A12=n1i=1nXi2Xˉ=n1i=1n(XiXˉ)2

例3
设总体 X X X [ a , b ] [a,b] [a,b]上服从均匀分布, 其中 a , b a, b a,b未知, X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn是一个样本,求 a , b a, b a,b的估计量。
解:
μ 1 = E ( X ) = a + b 2 μ 2 = E ( X 2 ) = D ( X ) + [ E ( X ) ] 2 = ( a − b ) 2 12 + ( a + b ) 2 4 \begin{aligned} \mu_1&amp;=E(X)=\frac{a+b}{2}\\ \mu_2&amp;=E(X^2)=D(X)+[E(X)]^2\\ &amp;=\frac{(a-b)^2}{12}+\frac{(a+b)^2}{4} \end{aligned} μ1μ2=E(X)=2a+b=E(X2)=D(X)+[E(X)]2=12(ab)2+4(a+b)2

A 1 = a + b 2 = 1 n ∑ i = 1 n X i A 2 = ( a − b ) 2 12 + ( a + b ) 2 4 = 1 n ∑ i = 1 n X i 2 \begin{aligned} A_1&amp;=\frac{a+b}{2}=\frac{1}{n}\sum\limits_{i=1}^n{X_i}\\ A_2&amp;=\frac{(a-b)^2}{12}+\frac{(a+b)^2}{4}=\frac{1}{n}\sum\limits_{i=1}^n{X^2_i} \end{aligned} A1A2=2a+b=n1i=1nXi=12(ab)2+4(a+b)2=n1i=1nXi2

{ a + b = 2 A 1 b − a = 12 ( A 2 − A 1 2 ) \left\{ \begin{aligned} &amp;a+b=2A_1\\ \\\quad &amp;b-a=\sqrt{12(A_2-A_1^2)} \end{aligned} \right. a+b=2A1ba=12(A2A12)
a , b a,b a,b的估计量为:
a ^ = X ˉ − 3 n ∑ i = 1 n ( X i − X ˉ ) 2 b ^ = X ˉ + 3 n ∑ i = 1 n ( X i − X ˉ ) 2 \begin{aligned} &amp;\hat{a}=\bar{X}-\sqrt{\frac{3}{n}\sum\limits^n_{i=1}{(X_i-\bar{X})^2}}\\ &amp;\hat{b}=\bar{X}+\sqrt{\frac{3}{n}\sum\limits^n_{i=1}{(X_i-\bar{X})^2}} \end{aligned} a^=Xˉn3i=1n(XiXˉ)2 b^=Xˉ+n3i=1n(XiXˉ)2

最大似然估计

似然函数的定义

  • 总体X是连续型:设概率密度为 f ( x ; θ ) f(x;\theta) f(x;θ) θ \theta θ为待估参数, θ ∈ Θ \theta\in\Theta θΘ Θ \Theta Θ θ \theta θ可能的取值范围。设 X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn是来自X的样本,则 X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn的联合密度为 ∏ i = 1 n f ( x ; θ ) \prod\limits^n_{i=1}f(x;\theta) i=1nf(x;θ),设 x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n x_1,x_2,x_3,\cdots,x_n x1,x2,x3,,xn为相应样本 X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn的一个样本值,则随机点 ( X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n ) (X_1,X_2,X_3,\cdots,X_n) (X1,X2,X3,,Xn)落在点 x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n x_1,x_2,x_3,\cdots,x_n x1,x2,x3,,xn的邻域内的概率近似地为 ∏ i = 1 n f ( x ; θ ) d x i \prod\limits^n_{i=1}f(x;\theta)dx_i i=1nf(x;θ)dxi。则
    L ( θ ) = L ( x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n ; θ ) = ∏ i = 1 n f ( x ; θ ) L(\theta)=L(x_1,x_2,x_3,\cdots,x_n;\theta)=\prod\limits^n_{i=1}f(x;\theta) L(θ)=L(x1,x2,x3,,xn;θ)=i=1nf(x;θ)
    L ( θ ) L(\theta) L(θ)称为样本的似然函数。
  • 总体X是离散型:设分布律 P { X = x } = p ( x ; θ ) P\{X=x\}=p(x;\theta) P{X=x}=p(x;θ) θ ∈ Θ \theta\in\Theta θΘ的形式是已知的, θ \theta θ为待估参数, Θ \Theta Θ θ \theta θ可能的取值范围。设 X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn是来自X的样本,则 X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn的联合分布律为 ∏ i = 1 n p ( x i ; θ ) \prod\limits^n_{i=1}p(x_i;\theta) i=1np(xi;θ)
    x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n x_1,x_2,x_3,\cdots,x_n x1,x2,x3,,xn为相应样本 X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn的一个样本值,则 X 1 , X 2 , X 3 , ⋯ &ThinSpace; , X n X_1,X_2,X_3,\cdots,X_n X1,X2,X3,,Xn取到观察值 x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n x_1,x_2,x_3,\cdots,x_n x1,x2,x3,,xn的概率,即 { X 1 = x 1 , X 2 = x 2 , X 3 = x 3 , ⋯ &ThinSpace; , X n = x n } \{X_1=x_1,X_2=x_2,X_3=x_3,\cdots,X_n=x_n\} {X1=x1,X2=x2,X3=x3,,Xn=xn}的概率为
    L ( θ ) = L ( x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n ; θ ) = ∏ i = 1 n p ( x i ; θ ) , θ ∈ Θ L(\theta)=L(x_1,x_2,x_3,\cdots,x_n;\theta)=\prod\limits^n_{i=1}p(x_i;\theta),\theta\in\Theta L(θ)=L(x1,x2,x3,,xn;θ)=i=1np(xi;θ),θΘ
    L ( θ ) L(\theta) L(θ)称为样本的似然函数

最大似然估计的求解步骤

1.写出似然函数
L ( θ ) = L ( x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n ; θ ) = ∏ i = 1 n p ( x i ; θ ) L(\theta)=L(x_1,x_2,x_3,\cdots,x_n;\theta)=\prod\limits^n_{i=1}p(x_i;\theta) L(θ)=L(x1,x2,x3,,xn;θ)=i=1np(xi;θ)
或者
L ( θ ) = L ( x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n ; θ ) = ∏ i = 1 n f ( x ; θ ) L(\theta)=L(x_1,x_2,x_3,\cdots,x_n;\theta)=\prod\limits^n_{i=1}f(x;\theta) L(θ)=L(x1,x2,x3,,xn;θ)=i=1nf(x;θ)
2.取对数
l n L ( θ ) = ∑ i = 1 n l n   p ( x i ; θ ) 或 者 l n L ( θ ) = ∑ i = 1 n l n   f ( x i ; θ ) \begin{aligned} &amp;lnL(\theta)=\sum\limits^n_{i=1}ln\ p(x_i;\theta)\\ &amp;或者\\ &amp;lnL(\theta)=\sum\limits^n_{i=1}ln\ f(x_i;\theta) \end{aligned} lnL(θ)=i=1nln p(xi;θ)lnL(θ)=i=1nln f(xi;θ)
3.对 θ \theta θ求导 d l n L ( θ ) d θ \frac{dlnL(\theta)}{d\theta} dθdlnL(θ),并且令 d l n L ( θ ) d θ = 0 \frac{dlnL(\theta)}{d\theta}=0 dθdlnL(θ)=0,解方程即得未知参数 θ \theta θ的最大似然估计值 θ ^ \hat{\theta} θ^

例题

设总体 X X X [ a , b ] [a,b] [a,b]上服从均匀分布, 其中 a , b a,b a,b未知, x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n x_1,x_2,x_3,\cdots,x_n x1,x2,x3,,xn是来自总体 X X X的一个样本值,求 a , b a,b a,b的最大似然估计量。
解:令
x m i n = m i n x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n x m a x = m a x x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n \begin{aligned} x_{min}=min{x_1,x_2,x_3,\cdots,x_n} \\x_{max}=max{x_1,x_2,x_3,\cdots,x_n} \end{aligned} xmin=minx1,x2,x3,,xnxmax=maxx1,x2,x3,,xn
X X X的概率密度函数为
f ( x ; a , b ) = { 1 b − a , a ≤ x ≤ b 0 , 其 他 \begin{aligned} f(x;a,b)={\left\{\begin{aligned}&amp;\frac{1}{b-a},a\leq x\leq b\\ &amp;0,\quad \quad 其他 \end{aligned} \right.} \end{aligned} f(x;a,b)=ba1,axb0,
则似然函数为
L ( a , b ) = { 1 ( b − a ) n , a ≤ x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n ≤ b   0 , 其 他 \begin{aligned} L(a,b)={\left\{\begin{aligned}&amp;\frac{1}{(b-a)^n},a\leq x_1,x_2,x_3,\cdots,x_n\leq b\\ &amp;\quad \ 0,\quad \quad \quad 其他 \end{aligned} \right.} \end{aligned} L(a,b)=(ba)n1,ax1,x2,x3,,xnb 0,
由于 a ≤ x 1 , x 2 , x 3 , ⋯ &ThinSpace; , x n v b a\leq x_1,x_2,x_3,\cdots,x_nvb ax1,x2,x3,,xnvb a ≤ x m i n , x m a x ≤ b a\leq x_{min},x_{max}\leq b axmin,xmaxb
所以
L ( a , b ) = { 1 ( b − a ) n , a ≤ x m i n , x m a x ≤ b   0 , 其 他 \begin{aligned} L(a,b)={\left\{\begin{aligned}&amp;\frac{1}{(b-a)^n},a\leq x_{min},x_{max}\leq b\\ &amp;\quad \ 0,\quad \quad \quad 其他 \end{aligned} \right.} \end{aligned} L(a,b)=(ba)n1,axmin,xmaxb 0,
对于满足条件的 a ≤ x m i n , x m a x ≤ b a\leq x_{min},x_{max}\leq b axmin,xmaxb的任意 a , b a,b a,b
L ( a , b ) = 1 ( b − a ) n ≤ 1 ( x m a x − x m i n ) 2 L(a,b)=\frac{1}{(b-a)^n}\leq \frac{1}{(x_{max}-x_{min})^2} L(a,b)=(ba)n1(xmaxxmin)21
即似然函数在 a = x m i n , b = x m a x a=x_{min},b=x_{max} a=xmin,b=xmax时取得最大值 1 ( x m a x − x m i n ) 2 \frac{1}{(x_{max}-x_{min})^2} (xmaxxmin)21
所以 a , b a,b a,b的最大似然估计值为
a ^ = x m i n = min ⁡ 1 ≤ i ≤ n x i b ^ = x m a x = max ⁡ 1 ≤ i ≤ n x i \begin{aligned} \hat{a}=x_{min}=\min\limits_{1\leq i\leq n}x_i \\\hat{b}=x_{max}=\max\limits_{1\leq i\leq n}x_i \end{aligned} a^=xmin=1inminxib^=xmax=1inmaxxi
a , b a,b a,b的最大似然估计量为
a ^ = min ⁡ 1 ≤ i ≤ n X i b ^ = max ⁡ 1 ≤ i ≤ n X i \begin{aligned} \hat{a}=\min\limits_{1\leq i\leq n}X_i \\\hat{b}=\max\limits_{1\leq i\leq n}X_i \end{aligned} a^=1inminXib^=1inmaxXi

  • 3
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值