导数的基本公式推导

前言

本文主要推导了人教版A版数学选择性必修第二册上直接给出的基本的导数公式

upd20220909. 都说了不更新了,为了不误导大家,请戳这里查看最新的修改版



一、导数的四则运算法则

f ( x ) f(x) f(x) g ( x ) g(x) g(x) 均为可导函数

  1. [ f ( x ) ± g ( x ) ] ′ = f ′ ( x ) ± g ′ ( x ) [f(x) \pm g(x)]' = f'(x) \pm g'(x) [f(x)±g(x)]=f(x)±g(x)

证明: [ f ( x ) ± g ( x ) ] ′ [f(x) \pm g(x)]' [f(x)±g(x)]

= lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) ± [ g ( x + Δ x ) − g ( x ) ] Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{f(x+\Delta x)-f(x) \pm\left[g(x+\Delta x)-g(x)\right]}{\Delta x}} =Δx0limΔxf(x+Δx)f(x)±[g(x+Δx)g(x)]

= lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x ± lim ⁡ Δ x → 0 g ( x + Δ x ) − g ( x ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{f(x+\Delta x)-f(x)}{\Delta x}} \pm \lim\limits_{\Delta x\to 0}{\dfrac{g(x+\Delta x)-g(x)}{\Delta x}} =Δx0limΔxf(x+Δx)f(x)±Δx0limΔxg(x+Δx)g(x)

= f ′ ( x ) ± g ′ ( x ) =f'(x)\pm g'(x) =f(x)±g(x)


  1. [ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)g(x)]=f(x)g(x)+f(x)g(x)

证明: [ f ( x ) g ( x ) ] ′ [f(x)g(x)]' [f(x)g(x)]

= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x =\lim\limits_{\Delta x \to 0}{\dfrac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x}} =Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x)

= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x + Δ x ) + f ( x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x =\lim\limits_{\Delta x \to 0}{\dfrac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x+\Delta x)+f(x)g(x+\Delta x)-f(x)g(x)}{\Delta x}} =Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x+Δx)+f(x)g(x+Δx)f(x)g(x)

= lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x lim ⁡ Δ x → 0 g ( x + Δ x ) + f ( x ) lim ⁡ Δ x → 0 g ( x + Δ x ) − g ( x ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{f(x+\Delta x)-f(x)}{\Delta x}}\lim\limits_{\Delta x\to 0}{g(x+\Delta x)}+f(x)\lim\limits_{\Delta x\to 0}{\dfrac{g(x+\Delta x)-g(x)}{\Delta x}} =Δx0limΔxf(x+Δx)f(x)Δx0limg(x+Δx)+f(x)Δx0limΔxg(x+Δx)g(x)

= f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) =f'(x)g(x)+f(x)g'(x) =f(x)g(x)+f(x)g(x)


  1. [ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 \left[\dfrac{f(x)}{g(x)}\right]' = \dfrac{f'(x)g(x)-f(x)g'(x)}{\left[g(x)\right]^2} [g(x)f(x)]=[g(x)]2f(x)g(x)f(x)g(x)

证明: [ f ( x ) g ( x ) ] ′ \left[\dfrac{f(x)}{g(x)}\right]' [g(x)f(x)]

= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\frac{f(x+\Delta x)}{g(x+\Delta x)}-\frac{f(x)}{g(x)}}{\Delta x}} =Δx0limΔxg(x+Δx)f(x+Δx)g(x)f(x)

= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x ) − g ( x + Δ x ) f ( x ) Δ x g ( x + Δ x ) g ( x ) =\lim\limits_{\Delta x\to 0}{\dfrac{f(x+\Delta x)g(x)-g(x+\Delta x)f(x)}{\Delta xg(x+\Delta x)g(x)}} =Δx0limΔxg(x+Δx)g(x)f(x+Δx)g(x)g(x+Δx)f(x)

= lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x ) − f ( x ) g ( x ) Δ x g ( x + Δ x ) g ( x ) − lim ⁡ Δ x → 0 g ( x + Δ x ) f ( x ) − f ( x ) g ( x ) Δ x g ( x + Δ x ) g ( x ) =\lim\limits_{\Delta x\to 0}{\dfrac{f(x+\Delta x)g(x)-f(x)g(x)}{\Delta xg(x+\Delta x)g(x)}}-\lim\limits_{\Delta x \to 0}{\dfrac{g(x+\Delta x)f(x)-f(x)g(x)}{\Delta xg(x+\Delta x)g(x)}} =Δx0limΔxg(x+Δx)g(x)f(x+Δx)g(x)f(x)g(x)Δx0limΔxg(x+Δx)g(x)g(x+Δx)f(x)f(x)g(x)

= lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x lim ⁡ Δ x → 0 g ( x ) g ( x + Δ x ) g ( x ) − lim ⁡ Δ x → 0 g ( x + Δ x ) − g ( x ) Δ x lim ⁡ Δ x → 0 f ( x ) g ( x + Δ x ) g ( x ) =\lim\limits_{\Delta x\to 0}{\dfrac{f(x+\Delta x)-f(x)}{\Delta x}}\lim\limits_{\Delta x\to 0}{\dfrac{g(x)}{g(x+\Delta x)g(x)}} - \lim\limits_{\Delta x\to 0}{\dfrac{g(x+\Delta x)-g(x)}{\Delta x}}\lim\limits_{\Delta x\to 0}{\dfrac{f(x)}{g(x+\Delta x)g(x)}} =Δx0limΔxf(x+Δx)f(x)Δx0limg(x+Δx)g(x)g(x)Δx0limΔxg(x+Δx)g(x)Δx0limg(x+Δx)g(x)f(x)

= f ′ ( x ) g ( x ) [ g ( x ) ] 2 − g ′ ( x ) f ( x ) [ g ( x ) ] 2 =f'(x)\dfrac{g(x)}{\left[g(x)\right]^2} - g'(x)\dfrac{f(x)}{\left[g(x)\right]^2} =f(x)[g(x)]2g(x)g(x)[g(x)]2f(x)

= f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 =\dfrac{f'(x)g(x)-f(x)g'(x)}{\left[g(x)\right]^2} =[g(x)]2f(x)g(x)f(x)g(x)


二、基本初等函数的导数公式

  1. f ( x ) = x a ( a ∈ N + , 且 a ≠ 1 ) f(x)=x^a(a\in \N_{+},\text{且} a\ne1) f(x)=xa(aN+,a=1) ,则 f ′ ( x ) = a x a − 1 f'(x) = a x^{a-1} f(x)=axa1

证明: f ′ ( x ) f'(x) f(x)

= lim ⁡ Δ x → 0 ( x + Δ x ) a − ( x ) a Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{(x+\Delta x)^{a}-(x)^{a}}{\Delta x}} =Δx0limΔx(x+Δx)a(x)a

= lim ⁡ Δ x → 0 ∑ r = 0 a C a r x a − r Δ x r − C a 0 x a Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\sum\limits_{r=0}^{a}{C_{a}^{r}x^{a-r}\Delta x^{r}}-C_{a}^{0}x^{a}}{\Delta x}} =Δx0limΔxr=0aCarxarΔxrCa0xa

= lim ⁡ Δ x → 0 ∑ r = 1 a C a r x a − r Δ x r Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\sum\limits_{r=1}^{a}{C_{a}^{r}x^{a-r}\Delta x^{r}}}{\Delta x}} =Δx0limΔxr=1aCarxarΔxr

= lim ⁡ Δ x → 0 ∑ r = 2 a C a r x a − r Δ x r − 1 + C a 1 x a − 1 =\lim\limits_{\Delta x\to 0}{\sum\limits_{r=2}^{a}{C_{a}^{r}x^{a-r}\Delta x^{r-1}+C_{a}^{1}x^{a-1}}} =Δx0limr=2aCarxarΔxr1+Ca1xa1

= C a 1 x a − 1 =C_a^{1}x^{a-1} =Ca1xa1

= a x a − 1 =a x^{a-1} =axa1

貌似可以推广到 a ∈ R a\in \R aR 的情况,待完善


  1. f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx ,则 f ′ ( x ) = cos ⁡ x f'(x)=\cos x f(x)=cosx

证明: f ′ ( x ) f'(x) f(x)

= lim ⁡ Δ x → 0 sin ⁡ ( x + Δ x ) − sin ⁡ x Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\sin (x+\Delta x)-\sin x}{\Delta x}} =Δx0limΔxsin(x+Δx)sinx

= lim ⁡ Δ x → 0 sin ⁡ x cos ⁡ Δ x + sin ⁡ Δ x cos ⁡ x − sin ⁡ x Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\sin x \cos\Delta x+\sin \Delta x \cos x-\sin x}{\Delta x}} =Δx0limΔxsinxcosΔx+sinΔxcosxsinx

= lim ⁡ Δ x → 0 sin ⁡ x ( cos ⁡ Δ x − 1 ) + sin ⁡ Δ x cos ⁡ x Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\sin x(\cos\Delta x-1)+\sin\Delta x\cos x}{\Delta x}} =Δx0limΔxsinx(cosΔx1)+sinΔxcosx

= lim ⁡ Δ x → 0 sin ⁡ x [ ( 1 − 2 sin ⁡ 2 Δ x 2 ) − 1 ] + cos ⁡ x ( 2 sin ⁡ Δ x 2 cos ⁡ Δ x 2 ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\sin x\left[\left(1-2\sin^2\dfrac{\Delta x}{2}\right)-1\right]+\cos x\left(2\sin\dfrac{\Delta x}{2}\cos \dfrac{\Delta x}{2}\right)}{\Delta x}} =Δx0limΔxsinx[(12sin22Δx)1]+cosx(2sin2Δxcos2Δx)

= lim ⁡ Δ x → 0 2 sin ⁡ Δ x 2 cos ⁡ Δ x 2 cos ⁡ x − 2 sin ⁡ 2 Δ x 2 sin ⁡ x Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{2\sin\dfrac{\Delta x}{2}\cos\dfrac{\Delta x}{2}\cos x-2\sin^2\dfrac{\Delta x}{2}\sin x}{\Delta x}} =Δx0limΔx2sin2Δxcos2Δxcosx2sin22Δxsinx

= lim ⁡ Δ x → 0 2 sin ⁡ Δ x 2 ( cos ⁡ Δ x 2 cos ⁡ x − sin ⁡ x sin ⁡ Δ x 2 ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{2\sin\dfrac{\Delta x}{2}\left(\cos\dfrac{\Delta x}{2}\cos x-\sin x\sin \dfrac{\Delta x}{2}\right)}{\Delta x}} =Δx0limΔx2sin2Δx(cos2Δxcosxsinxsin2Δx)

= lim ⁡ Δ x → 0 2 sin ⁡ Δ x 2 cos ⁡ ( Δ x 2 + x ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{2\sin\dfrac{\Delta x}{2}\cos\left(\dfrac{\Delta x}{2}+x\right)}{\Delta x}} =Δx0limΔx2sin2Δxcos(2Δx+x)

= lim ⁡ Δ x → 0 cos ⁡ ( Δ x 2 + x ) sin ⁡ Δ x 2 Δ x 2 =\lim\limits_{\Delta x\to 0}{\cos\left(\dfrac{\Delta x}{2}+x\right)\dfrac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}} =Δx0limcos(2Δx+x)2Δxsin2Δx

= lim ⁡ Δ x → 0 cos ⁡ ( Δ x 2 + x ) =\lim\limits_{\Delta x\to 0}\cos\left(\dfrac{\Delta x}{2}+x\right) =Δx0limcos(2Δx+x)

= cos ⁡ x =\cos x =cosx


  1. f ( x ) = cos ⁡ x f(x)=\cos x f(x)=cosx ,则 f ′ ( x ) = − sin ⁡ x f'(x) = -\sin x f(x)=sinx

证明: f ′ ( x ) f'(x) f(x)

= lim ⁡ Δ x → 0 cos ⁡ ( x + Δ x ) − cos ⁡ x Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\cos(x+\Delta x)-\cos x}{\Delta x}} =Δx0limΔxcos(x+Δx)cosx

= lim ⁡ Δ x → 0 cos ⁡ x cos ⁡ Δ x − sin ⁡ Δ x sin ⁡ x − cos ⁡ x Δ x =\lim\limits_{\Delta x\to 0}\dfrac{\cos x\cos \Delta x- \sin \Delta x\sin x-\cos x}{\Delta x} =Δx0limΔxcosxcosΔxsinΔxsinxcosx

= lim ⁡ Δ x → 0 cos ⁡ x ( cos ⁡ Δ x − 1 ) − sin ⁡ Δ x sin ⁡ x Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\cos x(\cos\Delta x-1)-\sin \Delta x\sin x}{\Delta x}} =Δx0limΔxcosx(cosΔx1)sinΔxsinx

= lim ⁡ Δ x → 0 cos ⁡ x [ ( 1 − 2 sin ⁡ 2 Δ x 2 ) − 1 ] − sin ⁡ x ( 2 sin ⁡ Δ x 2 cos ⁡ Δ x 2 ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\cos x \left[\left(1-2\sin^2\dfrac{\Delta x}{2}\right)-1\right]-\sin x\left(2\sin\dfrac{\Delta x}{2}\cos\dfrac{\Delta x}{2}\right)}{\Delta x}} =Δx0limΔxcosx[(12sin22Δx)1]sinx(2sin2Δxcos2Δx)

= lim ⁡ Δ x → 0 − 2 sin ⁡ 2 Δ x 2 cos ⁡ x − 2 sin ⁡ Δ x 2 sin ⁡ x cos ⁡ Δ x 2 Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{-2\sin^2\dfrac{\Delta x}{2}\cos x-2\sin\dfrac{\Delta x}{2}\sin x \cos\dfrac{\Delta x}{2}}{\Delta x}} =Δx0limΔx2sin22Δxcosx2sin2Δxsinxcos2Δx

= lim ⁡ Δ x → 0 − 2 sin ⁡ Δ x 2 ( sin ⁡ Δ x 2 cos ⁡ x + sin ⁡ x cos ⁡ Δ x 2 ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{-2\sin\dfrac{\Delta x}{2}\left(\sin \dfrac{\Delta x}{2}\cos x+\sin x \cos \dfrac{\Delta x}{2}\right)}{\Delta x}} =Δx0limΔx2sin2Δx(sin2Δxcosx+sinxcos2Δx)

= lim ⁡ Δ x → 0 − 2 sin ⁡ Δ x 2 sin ⁡ ( x + Δ x 2 ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{-2\sin \dfrac{\Delta x}{2}\sin\left(x+\dfrac{\Delta x}{2}\right)}{\Delta x}} =Δx0limΔx2sin2Δxsin(x+2Δx)

= lim ⁡ Δ x → 0 − sin ⁡ ( x + Δ x 2 ) sin ⁡ Δ x 2 Δ x 2 =\lim\limits_{\Delta x\to 0}{-\sin\left(x+\dfrac{\Delta x}{2}\right)\dfrac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}} =Δx0limsin(x+2Δx)2Δxsin2Δx

= lim ⁡ Δ x → 0 − sin ⁡ ( x + Δ x 2 ) =\lim\limits_{\Delta x\to 0}{-\sin\left(x+\dfrac{\Delta x}{2}\right)} =Δx0limsin(x+2Δx)

= − sin ⁡ x =-\sin x =sinx


  1. f ( x ) = a x ( a > 0 , 且 a ≠ 1 ) f(x)=a^x (a>0,\text{且}a \ne 1) f(x)=ax(a>0,a=1) ,则 f ′ ( x ) = a x ln ⁡ a f'(x)=a^x\ln a f(x)=axlna

证明: f ′ ( x ) f'(x) f(x)

= lim ⁡ Δ x → 0 a x + Δ x − a x Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{a^{x+\Delta x}-a^{x}}{\Delta x}} =Δx0limΔxax+Δxax

= lim ⁡ Δ x → 0 a x ( a Δ x − 1 ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{a^x(a^{\Delta x}-1)}{\Delta x}} =Δx0limΔxax(aΔx1)

t = a Δ x − 1 t=a^{\Delta x}-1 t=aΔx1 ,则 Δ x = log ⁡ a ( t + 1 ) \Delta x = \log_a(t+1) Δx=loga(t+1)

∵ Δ x → 0 \because\Delta x\to 0 Δx0

∴ a Δ x → 1 \therefore a^{\Delta x}\to 1 aΔx1

∴ t + 1 → 1 \therefore t+1\to1 t+11

t → 0 t\to0 t0

∴ \therefore 原极限可化为

f ′ ( x ) f'(x) f(x)

= lim ⁡ t → 0 a x t log ⁡ a ( t + 1 ) =\lim\limits_{t\to 0}{\dfrac{a^xt}{\log_a(t+1)}} =t0limloga(t+1)axt

= lim ⁡ t → 0 a x 1 t log ⁡ a ( t + 1 ) =\lim\limits_{t\to 0}{\dfrac{a^x}{\dfrac{1}{t}\log_a(t+1)}} =t0limt1loga(t+1)ax

= lim ⁡ t → 0 a x log ⁡ a ( 1 + t ) 1 t =\lim\limits_{t\to 0}{\dfrac{a^x}{\log_a(1+t)^{\frac{1}{t}}}} =t0limloga(1+t)t1ax

= a x 1 log ⁡ a e =a^x\dfrac{1}{\log_ae} =axlogae1

= a x ln ⁡ a ln ⁡ e =a^x\dfrac{\ln a}{\ln e} =axlnelna

= a x ln ⁡ a =a^x\ln a =axlna

特别地,当 a = e a=e a=e 时,即 f ( x ) = e x f(x)=e^x f(x)=ex ,有 f ′ ( x ) = e x f'(x)=e^x f(x)=ex


  1. f ( x ) = log ⁡ a x ( a > 0 , 且 a ≠ 1 ) f(x)=\log_ax(a>0,\text{且}a \ne 1) f(x)=logax(a>0,a=1) ,则 f ′ ( x ) = 1 x ln ⁡ a f'(x) = \dfrac{1}{x\ln a} f(x)=xlna1

证明: f ′ ( x ) f'(x) f(x)

= lim ⁡ Δ x → 0 log ⁡ a ( x + Δ x ) − log ⁡ a x Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\log_a(x+\Delta x)-\log_ax}{\Delta x}} =Δx0limΔxloga(x+Δx)logax

= lim ⁡ Δ x → 0 log ⁡ a ( 1 + Δ x x ) Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\log_a\left(1+\dfrac{\Delta x}{x}\right)}{\Delta x}} =Δx0limΔxloga(1+xΔx)

= lim ⁡ Δ x → 0 log ⁡ a ( 1 + Δ x x ) 1 Δ x =\lim\limits_{\Delta x\to 0}{\log_a{\left(1+\dfrac{\Delta x}{x}\right)^{\frac{1}{\Delta x}}}} =Δx0limloga(1+xΔx)Δx1

t = Δ x x t=\dfrac{\Delta x}{x} t=xΔx ,则 1 Δ x = 1 t x \dfrac{1}{\Delta x} = \dfrac{1}{tx} Δx1=tx1

∵ Δ x → 0 \because \Delta x\to 0 Δx0

∴ Δ x x → 0 \therefore \dfrac{\Delta x}{x}\to 0 xΔx0

∴ t → 0 \therefore t\to 0 t0

∴ \therefore 原极限可化为

f ′ ( x ) f'(x) f(x)

= lim ⁡ t → 0 log ⁡ a ( 1 + t ) 1 t x =\lim\limits_{t\to 0}{\log_a\left(1+t\right)^{\frac{1}{tx}}} =t0limloga(1+t)tx1

= lim ⁡ t → 0 1 x log ⁡ a ( 1 + t ) 1 t =\lim\limits_{t\to 0}{\dfrac{1}{x}\log_a\left(1+t\right)^{\frac{1}{t}}} =t0limx1loga(1+t)t1

= 1 x log ⁡ a e =\dfrac{1}{x}\log_ae =x1logae

= 1 ln ⁡ e x ln ⁡ a =\dfrac{1\ln e}{x\ln a} =xlna1lne

= 1 x ln ⁡ a =\dfrac{1}{x\ln a} =xlna1

特别地,当 a = e a=e a=e 时,即 f ( x ) = ln ⁡ x f(x)=\ln x f(x)=lnx ,有 f ′ ( x ) = 1 x f'(x)=\dfrac{1}{x} f(x)=x1


  1. f ( x ) = ϕ ( ϕ 为常数 ) f(x)=\phi ( \phi \text{为常数}) f(x)=ϕ(ϕ为常数) ,则 f ′ ( x ) = 0 f'(x)=0 f(x)=0

证明: f ′ ( x ) f'(x) f(x)

= lim ⁡ Δ x → 0 ϕ − ϕ Δ x =\lim\limits_{\Delta x\to 0}{\dfrac{\phi-\phi}{\Delta x}} =Δx0limΔxϕϕ

= 0 =0 =0


总结

本文推导了部分基本的导数公式

转载请说明出处

  • 9
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值