深度学习卷积神经网络垃圾分类检测

数据集

一共包含四类:cardboard(硬纸盒)、glass(玻璃瓶子)、metal(金属)、plastic(塑料)。全部数据均为图片,一共500张图片左右

数据划分→训练集:验证集:测试集 = 8 :1 :1

神经网络模型

模型采用微型VGG16网络模型,训练过程采用stepLR策略,学习率0.0005,Epoch为15,每个10个Epoch降低0.1,优化器为Adam,损失函数为交叉熵损失函数。

训练过程和最终结果

训练集和验证集的实验过程

测试集的最终过程

模型测试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值