数据集
一共包含四类:cardboard(硬纸盒)、glass(玻璃瓶子)、metal(金属)、plastic(塑料)。全部数据均为图片,一共500张图片左右
数据划分→训练集:验证集:测试集 = 8 :1 :1
神经网络模型
模型采用微型VGG16网络模型,训练过程采用stepLR策略,学习率0.0005,Epoch为15,每个10个Epoch降低0.1,优化器为Adam,损失函数为交叉熵损失函数。
训练过程和最终结果
训练集和验证集的实验过程
测试集的最终过程
模型测试
数据集
一共包含四类:cardboard(硬纸盒)、glass(玻璃瓶子)、metal(金属)、plastic(塑料)。全部数据均为图片,一共500张图片左右
数据划分→训练集:验证集:测试集 = 8 :1 :1
神经网络模型
模型采用微型VGG16网络模型,训练过程采用stepLR策略,学习率0.0005,Epoch为15,每个10个Epoch降低0.1,优化器为Adam,损失函数为交叉熵损失函数。
训练过程和最终结果
训练集和验证集的实验过程
测试集的最终过程
模型测试