深度学习记录--学习率衰减(learning rate decay)

本文探讨了学习率衰减在解决mini-batch梯度下降中震荡问题的方法,通过调整学习率随时间减小,使得模型更接近最小值。介绍了一些实现策略,如固定衰减、指数衰减以及分段衰减函数,强调了学习率衰减作为深度学习优化中的重要超参数。
摘要由CSDN通过智能技术生成

学习率衰减

mini-batch梯度下降最终会在最小值附近的区间摆动(噪声很大),不会精确收敛

为了更加近似最小值,采用学习率衰减的方法

随着学习率的衰减,步长会逐渐变小,因此最终摆动的区间会很小,更加近似最小值

如下图,蓝色曲线表示mini-batch梯度下降,绿色曲线表示采用学习率衰减的梯度下降

学习率衰减的实现

1 epoch = 遍历数据1次

\alpha = \frac{1}{1+rate_{decay}*num_{epoch}} *\alpha_{0}

rate_{decay}是学习率衰减的超参数,\alpha_{0}是初始学习率,num_{epoch}是遍历次数

其他衰减方案

\alpha = \varepsilon ^{num_{epoch}}*\alpha_{0}

\alpha_{0}是初始学习率,\varepsilon是衰减常量,一般设置\varepsilon=0.95num_{epoch}是遍历次数

\alpha = \frac{k}{\sqrt{num_{epoch}}} *\alpha_{0}

\alpha_{0}是初始学习率,k是衰减常量,num_{epoch}是遍历次数

分段衰减函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值