1.为何采样周期要小于整数周期的1/2
用一个旋转轮来形象理解这个定理,这是一个各个轴之间间隔45度的轮子,每个轮子都被标上了标识。
假设这个轮子以每秒45度来转动,那么每个轴返回原位需要8秒(采样周期)。那么如果我们每8,16,24秒来用相机拍照,是不是每次都可以拍摄到原图像静止不动?这是因为在采样周期内,车轮旋转的整数周期都会回到原位,不论旋转方向如何。那么就有了一个非常重要的结论:采样周期的整数倍不能检测到相位(状态)变化。 每4秒拍照一次,轮子只能转一半,那么我们可以在照片中检测到轮子正在旋转,虽然依然不能区分它的旋转方向,但是轮子的状态(相位)已经可以区分了。以每3秒的速度拍摄,无论顺时针还是逆时针,都可以看到轮轴的错位(相位的变化)。这就是Nyquist-Shannon采样定理,我们希望同时看到轮子的旋转和相位变化,采样周期要小于整数周期的1/2。
2.为什么采样频率要大于最大频率的2被才能有离散信号还原出连续信号?
任何信号可以由若干个正弦信号加权叠加,实际上频率最高的正弦信号分量是我们所关注的,因为如果能把他采样出来,低频的正弦波分量就就更能了,而采样一个正弦波其实每个周期最少取两个点就够了,这样就能把正弦波还原回去(记住),这个“2”就是这样来的,所以极限状态就是那个最高频的正弦信号刚好采了两次,比他稍低的分量就两次多了,就有理论富余了。